首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fruiting body production for one strain of Pleurotus ostreatus and three strains of P. pulmonarius was evaluated on coffee pulp pasteurized at 80 °C for 1 h. Based upon three harvests per strain, the single P. ostreatus line was found to display a 40-day culture cycle, whereas the three P. pulmonarius strains completed their cycles after more than 50 days of incubation. These time periods were notably shorter than those observed in previous studies using other growth substrates. Nevertheless, yields expressed as biological efficiencies were not significantly different among strains, fluctuating between 125 and 138%. Extracellular enzymatic activity was also monitored for P. ostreatus and P. pulmonarius (one strain only). To do this, samples of mycelium-bearing substrate were taken every 4 days throughout the incubation period. Care was taken to represent all developmental stages, including primordial and fruiting bodies. Samples were either lyophilized and then analysed or, in some cases, analysed immediately without lyophilization. Hydrolase activity (i.e. endoglucanase (CMC) and cellobiohydrolase (CBH)) was found to depend on developmental stage, showing peak production during fruiting body formation. On the other hand, oxidase activity-(i.e. laccase (LAC) and Mn-peroxidase (MnP)) was associated with phenol degradation. Nevertheless, in the case of oxidases developmental timing differences were also observed. Specifically, LAC activity was detected as early as 8 days after inoculation in non-lyophilized samples, whereas MnP appeared near the end of the incubation period. No LAC activity was observed in lyophilized samples. This study concludes that coffee pulp might be successfully employed in the cultivation of mushrooms, not only because important extracellular enzymes are produced by mushrooms when grown upon this substrate, but also because the abbreviated cultivation cycle associated with this medium favours commercial processes. Commercialization might be further improved if strains specifically adapted to this novel substrate are selected.  相似文献   

2.
Silage tests to study reductions of antiphysiological compounds (caffeine and polyphenols) of fresh coffee pulp during the anaerobic fermentation were done. A concrete silo divided in compartments, with a total capacity of 9 tons of fresh material was utilized. The silage periods ranged between 99-224 days and the following materials were ensiled: 1) coffee pulp, 2) coffee pulp with sugar cane molasses, 3) coffee pulp with a mixture of molasses and ammonia and 4) screw pressed coffee pulp with molasses. Reductions in caffeine, total polyphenols and condensed polyphenols ranged between 13-63%, 28-70% and 51-81% respectively.It was concluded that in the case of coffee pulp, silage presents and ideal method to preserve the material and partially reduce the contents of antiphysiological compounds.  相似文献   

3.
Agro-industrial by-products are a potential source of added-value phenolic acids with promising applications in the food and pharmaceutical industries. Here two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids such as caffeic acid, p-coumaric acid and ferulic acid from coffee pulp, apple marc and wheat straw. Their hydrolysis activity was evaluated and compared with their action on maize bran and sugar beet pulp. The specificity of both enzymes against natural and synthetic substrates was evaluated; particular attention was paid to quinic esters and lignin monomers. The efficiency of both enzymes on model substrates was studied. We show the ability of these enzymes to hydrolyze quinic esters and ester linkages between phenolic acids and lignin monomer.  相似文献   

4.
The green scale, Coccus viridis (Green) (Hemiptera: Coccidae), is an insect pest of coffee and several other perennial cultivated plant species. We investigated changes in alkaloid and phenolic contents in coffee plants as a response to herbivory by this insect. Greenhouse‐grown, 11‐month‐old coffee plants were artificially infested with the coccid and compared with control, uninfested plants. Leaf samples were taken at 15, 30, 45, and 60 days after infestation, and high‐performance liquid chromatography was used to identify and quantify alkaloid and phenolic compounds induced by the coccids at each sampling date. Of the compounds investigated, caffeine was the main coffee alkaloid detected in fully developed leaves, and its concentration in infested plants was twice as high as in the control plants. The main coffee phenolics were caffeic and chlorogenic acid, and a significant increase in their concentrations occurred only in plants infested by C. viridis. A positive and significant relationship was found between alkaloid and phenolic concentrations and the infestation level by adults and nymphs of C. viridis. Caffeine and chlorogenic acid applied on coffee leaves stimulated the locomotory activity of the green scale, thus reducing their feeding compared to untreated leaves. This is the first study to show increased levels of coffee alkaloids and phenolics in response to herbivory by scale insects. The elevation of caffeine and chlorogenic acid levels in coffee leaves because of C. viridis infestation seems to affect this generalist insect by stimulating the locomotion of crawlers.  相似文献   

5.
Studies were carried out to screen the industrial strain HK35 of Pleurotus ostreatus for its ability to develop fruiting bodies in solid state cultivation using several substrates containing 17.8 to 55% coffee grounds. Our results showed that only 55% of coffee grounds was used in the substrate without detecting changes in fruiting body or on its biological efficiency of production. The chemical analysis of the caffeine in the substrate showed that this compound decreased about 59% of the mycelium activity, and no caffeine was found in fruiting bodies indicating its degradation by the fungal strain tested.  相似文献   

6.
取小麦根区土壤微生物于不同pH(5,7,8)条件下,在室内腐解成熟期麦秸。对不同时间提取物做生物活性检验,部分样品进行GC-MS测定。结果表明:酸性提取液对小麦,玉米种子萌发均表现出抑制作用,其强弱与腐解时间有关。第1天的提取物对小麦、玉米根长的抑制作用极显著(P〈0.01),第2周的提取物,以pH7时对小麦抑制最强,萌发率为零。第4周提取物pH8(A)对小麦不但无抑制作用,反而有明显的刺激作用。  相似文献   

7.
秸秆预处理对土壤微生物量及呼吸活性的影响   总被引:23,自引:7,他引:16  
冬小麦秸秆经8.0g·L^-1H2O2(pH11.0)溶液、12.5g·L^-1 NaOH溶液或H2SO4溶液浸泡8h并80℃烘干后,与无机N一起加入土壤,进行室内25℃恒温培养试验,在不同时间测定土壤微生物量C、N和CO2释放速率。结果表明,培养前期,秸秆预处理使土壤微生物量C数量增加了1.0~1.4倍,但降低了土壤微生物的呼吸活性;培养后期,NaOH和H2SO4处理使土壤微生物量C分别下降了28%和42%,但增加了土壤微生物的呼吸活性;H2O2处理则使土壤微生物量N增加90%;土壤微生物区系中的真菌比例在不同时刻有所增加,表明将秸秆预处理后施入土壤,将对土壤中微生物数量和呼吸活性产生一定影响。  相似文献   

8.
Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.  相似文献   

9.
Lentinula edodes (Berk.) Pegler is found in nature on dead broadleaf trees, but it is commercially produced on different substrates. The question of adaptation to different lignocellulosic substrates was addressed by measuring enzyme activities produced by six strains that were cultivated on wheat straw and that were able to produce sporophores. Despite quantitative variations, each strain of L. edodes had similar patterns of enzyme secretion into the wheat straw log matrix. Two peaks of carbohydrase activities were observed, the first relating to the early mycelial growth during the first days after spawning and the second during sporophore extension. Laccase activity in the early stage of colonization was related to the degradation of soluble phenolic compounds present in wheat straw. Manganese peroxidase activity was associated with mycelia th. The strains with the earlier production and higher yield were able to hydrolyse and utilize straw cell wall components soon aft er inoculation, and developed high metabolic activities.  相似文献   

10.
Studies were carried out to evaluate the feasibility of using coffee industry residues, viz. coffee husk, coffee leaves and spent coffee ground as substrates in solid state fermentation (SSF) to cultivate edible mushrooms Pleurotus. Eight strains of Pleurotus ostreatus and two strains of Pleurotus sajor‐caju were screened on a medium prepared from aqueous extract of coffee husk and agar. Based on best mycelial growth (9.68 mm/day) and biomass production (43.4 mg/plate in 9 days at 24°C), the strain P. ostreatus LPB 09 was selected for detailed studies. SSF was carried out using these substrates under different moisture conditions (45–75%) and spawn rates (2.5–25%). In general, although a 25% spawn rate appeared superior, the 10% spawn rate was recommended for all the three substrates in view of the process economics, as there was not any significant difference in the increase with 10 to 15%. The ideal moisture content for mycelial growth was 60–65% for coffee husk and spent coffee ground, and 60–70% for coffee leaves. The biological efficiency (BE), which is defined as the ratio of the weight of fresh fruiting bodies to the weight of dry substrate, multiplied by 100, and which indicates the fructification ability of the fungus for utilizing the substrate, was best with coffee husk. With coffee husk as the substrate, the first fructification occurred after 20 days of inoculation, and the biological efficiency reached about 97% after 60 days. When coffee leaves were used as the substrate, no fructification was observed even upon prolonged cultivation. With spent ground as the substrate, the first fructification occurred 23 days after inoculation and the biological efficiency reached about 90% in 50 days. There was a significant decrease in the caffeine and tannin contents (61 and 79%, respectively) of coffee husk after 60 days. It was remarkable to observe that caffeine was adsorbed onto the fruiting body (0.157%), indicating that it was not completely degraded by the fungal culture. However, no tannins were found in the fruiting body, indicating that the fungal strain was capable of degrading them. The results showed the feasibility of using coffee husk and spent coffee ground as substrates without any pre‐treatment for the cultivation of edible fungi in SSF, and provided one of the first steps towards an economical utilization of these otherwise unutilized or poorly utilized residues.  相似文献   

11.
A sandy soil from the Vesuvian volcanic area, low in organic matter, was treated in pot experiments with raw farm-yard manure, green horse bean and wheat straw in order to study the effects of organic amendments on physical, chemical and biological properties. Farm-yard manure, rawly composted, caused a significant decrease of bulk density and improved water retention and the content of available phospate and potassium. It also showed the higher conversion co-efficient to stable humus during two years of the incubation period. It depressed the wheat seed germination and cotyledon growth for a one-year incubation period. Horse bean green manure was rapidly mineralized and did not remarkably improve the physical properties of the soil. Furthermore, it produced the lowest humus content and negatively affected seed development for eight months, but remarkably increased nutrient elements' contents (P and K). Wheat straw, added with N (2% urea form), improved humus formation and soil structure compared to horse bean; it increased K and P content and negatively affected seedling development for two months only.  相似文献   

12.
The presence of several antiphysiological factors limit the use of coffee pulp in monogastric and ruminant feeding. Twenty six white rot fungi were grown under solid substrate conditions in previously ensiled and pressed coffee pulp without adding additional sources of nitrogen. All grew and wholly covered the surface of the substrate. Six of them produced fruiting bodies. The weight loss interval ranged between 6.7–28.0% dry matter before fructification and from 17.0 to 48.7% after fructification. Some fungi biodegraded about 70, 55 and 47% of the total polyphenols, caffeine and permanganate lignin present in the original substrate.  相似文献   

13.
Summary. A mixture of roasted chicory roots and wheat germ (1:1 w/w) was subjected to extrusion processing for preparation of coffee substitute. Comparative studies concerning sensory characteristics and headspace volatiles were carried out between genuine coffee and a freshly prepared coffee substitute. The sensory evaluation revealed similarities between the two samples. The comparative odour profile analysis showed that the sweetish/caramel-like note scored higher in our coffee substitute sample than in real coffee, whereas the other odour quality attributes showed an opposite trend. The high quality of the fresh coffee substitute was correlated to the presence of volatiles that are responsible for the fresh coffee aroma, such as: 2-methylbutanal, 3-methylbutanal, 2-methylfuran and 2,3-butanedione in high concentration. Storage of coffee substitute samples revealed a noticeable decrease in concentration of the Strecker aldehydes and diketones and a remarkable increase in phenolic compounds, whereas pyrazine and furan derivatives showed no linear changes during storage. The ratio of 2,3-butanedione/2-methylfuran (B/M) was used as an indicator for aging of coffee substitute samples. The variation in this ratio (B/M) during storage for 6 months was consistent with that of the odour profile analysis. Authors’ address: Prof. Dr. Hoda H. M. Fadel, Chemistry of Flavour and Aroma Department, National Research Centre, Al-Behos St., Dokki, Cairo, Egypt  相似文献   

14.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied during steam explosion have an influence on the efficiency of detoxification. A reduction of the toxic effect of phenolic compounds by laccase polymerization of free phenols was demonstrated. Laccase treatment of steam-exploded wheat straw reduced sugar recovery after enzymatic hydrolysis, and it should be better performed after hydrolysis with cellulases. The fermentability of hydrolysates was greatly improved by the laccase treatment in all the samples. Our results demonstrate the action of phenolic compounds as fermentation inhibitors, and the advantages of a laccase treatment to increase the ethanol production from steam-exploded wheat straw.  相似文献   

15.
This study was conducted to investigate changes in in vitro dry matter digestibility (IVDMD), volatile fatty acids (VFA) production and cell-wall constituent degradation in wheat straw treated with six white-rot fungi: Daedalea quercina, Hericium clathroides, Phelinus laevigatus, Inonotus andersonii, Inonotus obliquus, and Inonotus dryophilus. The incubation of wheat straw for 30 days at 28 C improved IVDMD from 41.4 (control) to 59.2% for D. quercina, 56.3% for H. clathroides, 50.2% for P. laevigatus, 51.4% for I. andersonii, 52% for I. obliquus, and 55.9% for I. dryophilus. In contrast, the growth of fungi was accompanied by the dry matter loss of wheat straw: 43% for D. quercina, 12% for H. clathroides, and 22-25% for the other fungi. It is evident that the increase in digestibility by D. quercina was not offset by a loss of dry matter. The total VFA production during the rumen fermentation of fungus-treated straw was slightly increased by H. clathroides and I. dryophilus only. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were reduced in fungus-treated straw. Out of the three fractions (hemicellulose, cellulose, and lignin), hemicellulose and lignin showed the largest proportionate loss after inoculation with the fungi D. quercina, H. clathroides, P. laevigatus, and I. obliquus. The other two fungi showed the largest proportionate loss in cellulose and hemicellulose contents. The results of this study suggest that the digestion enhancement of wheat straw colonized by white-rot fungi is regulated by complex factors including the degradation of structural carbohydrates and lignin.  相似文献   

16.
The capacity of the white oyster mushroom, Pleurotus florida to biodegrade gossypol was studied, when grown on rice straw supplemented with cottonseed powder. The mushroom fruiting bodies did not contain any residues of gossypol at concentrations of cottonseed powder 0.15–0.60% nitrogen contents of rice straw at the end of mycelial ramification. However, the cottonseed supplementation (at 0.30% N level itself) caused a doubling in the mushroom yield and its protein content, per unit weight straw substrate. The mushroom mycelium when grown on synthetic medium in liquid cultures was able to biodegrade gossypol. A pre-incubation period of 5 days before the addition of gossypol into the culture medium, an inoculum load 10 mg and an incubation period of 10 days at 25 °C caused the biodegradation of 100 g gossypol. Increased concentrations of gossypol required increased duration and increased inoculum levels to effect biodegradation. However, the effect was more pronounced with an increase in inoculum density. The fungal monoculture when grown in rice straw (powder) (5%) + glucose (1%) liquid culture medium, showed an increase in hexosamine content and laccase activity that produced an increased degradation of gossypol over an incubation period from 5 to 25 days. Enzymic extracts of the mycelial monoculture raised on the chopped rice straw substrate when incubated with 100 g of gossypol demonstrated its biodegradability; the increase in enzyme concentration showed enhanced gossypol degradation. This study adds to the world list of organic compounds that Pleurotus is able to biodegrade, and explains the cause of non-yellowing of the white oyster mushroom (P. florida) fruiting bodies, during culture on rice straw with supplementation of cottonseed powder for enhancing the mushroom yields.  相似文献   

17.
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H2SO4) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.  相似文献   

18.
通过向设施土壤中添加解磷菌和秸秆,达到活化土壤中作物所需金属元素的含量,促进作物对中微量元素吸收的目的。试验设置对照、秸秆、解磷菌、解磷菌+秸秆4个处理,在不同时间测试土壤及秧苗中钙、镁、铜、铁、锌等的含量,确定解磷菌及秸秆对设施土壤金属元素含量及黄瓜秧苗吸收量的影响。试验结果表明,秸秆、解磷菌、秸秆+解磷菌处理能明显增加黄瓜秧苗吸收钙、镁、铁、铜的能力,对锌的吸收没有影响,其中秸秆+解磷菌处理对黄瓜秧苗吸收钙、镁、铜影响最大,促进作用分别达到6.26%、8.25%和11.57%,3种处理对设施土壤中有效钙、镁、铁的含量没有影响,但是能明显提高土壤中有效铜、锌的含量,盛果后期有效铜含量分别比对照提高12.19%、15.41%、16.49%,盛果后期有效锌含量分别比对照区提高38.8%、33.26%、56.81%。  相似文献   

19.
低磷石灰性土壤施磷和小麦秸秆后土壤微生物量磷的变化   总被引:4,自引:0,他引:4  
通过室内培养试验,向低磷的石灰性土壤加入磷(0、25、50、100 mg P·kg-1,KH2PO4)和小麦秸秆(5 g C·kg-1),25 ℃下培养90 d,研究在施肥和秸秆还田条件下土壤微生物量磷及微生物含磷量的变化特点,及其与土壤有效磷之间的关系.结果表明:土壤微生物量磷、微生物含磷量随加入无机磷量的提高而增加,最高分别为71.37和105.34 mg·kg-1;除非加入足够的无机磷(如100 mg·kg-1),否则同时加入秸秆会降低土壤微生物量磷和微生物含磷量,这种效果在培养初期更加明显.土壤微生物量磷和微生物含磷量与土壤有效磷之间存在显著的正相关关系(相关系数R2分别为0.26和0.40,n=49).加入的无机磷可迅速转化为微生物量磷,表观贡献率最高可达71%,秸秆的加入可使表观贡献率进一步提高.  相似文献   

20.
Fusarium sp. has been shown to be a promising organism for enhanced production of xylanases. In the present study, xylanase production by 21 Fusarium sp. isolates (8 Fusarium culmorum, 4 Fusarium solani, 6 Fusarium verticillioides and 3 Fusarium equiseti) was evaluated under solid state fermentation (SSF). The fungal isolate Fusarium solani SYRN7 was the best xylanase producer among the tested isolates. The effects of some agriculture wastes (like wheat straw, wheat bran, beet pulp and cotton seed cake) and incubation period on xylanase production by F. solani were optimized. High xylanase production (1465.8 U/g) was observed in wheat bran after 96 h of incubation. Optimum pH and temperature for xylanase activity were found to be 5 and 50 degrees C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号