首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contradistinction to conventional wisdom, we propose that retinal image slip of a visual scene (optokinetic pattern, OP) does not constitute the only crucial input for visually induced percepts of self-motion (vection). Instead, the hypothesis is investigated that there are three input factors: 1) OP retinal image slip, 2) motion of the ocular orbital shadows across the retinae, and 3) smooth pursuit eye movements (efference copy). To test this hypothesis, we visually induced percepts of sinusoidal rotatory self-motion (circular vection, CV) in the absence of vestibular stimulation. Subjects were presented with three concurrent stimuli: a large visual OP, a fixation point to be pursued with the eyes (both projected in superposition on a semi-circular screen), and a dark window frame placed close to the eyes to create artificial visual field boundaries that simulate ocular orbital rim boundary shadows, but which could be moved across the retinae independent from eye movements. In different combinations these stimuli were independently moved or kept stationary. When moved together (horizontally and sinusoidally around the subject's head), they did so in precise temporal synchrony at 0.05 Hz. The results show that the occurrence of CV requires retinal slip of the OP and/or relative motion between the orbital boundary shadows and the OP. On the other hand, CV does not develop when the two retinal slip signals equal each other (no relative motion) and concur with pursuit eye movements (as it is the case, e.g., when we follow with the eyes the motion of a target on a stationary visual scene). The findings were formalized in terms of a simulation model. In the model two signals coding relative motion between OP and head are fused and fed into the mechanism for CV, a visuo-oculomotor one, derived from OP retinal slip and eye movement efference copy, and a purely visual signal of relative motion between the orbital rims (head) and the OP. The latter signal is also used, together with a version of the oculomotor efference copy, for a mechanism that suppresses CV at a later stage of processing in conditions in which the retinal slip signals are self-generated by smooth pursuit eye movements.  相似文献   

2.
We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ±1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a “fixed” reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.  相似文献   

3.
The object of this study is to mathematically specify important characteristics of visual flow during translation of the eye for the perception of depth and self-motion. We address various strategies by which the central nervous system may estimate self-motion and depth from motion parallax, using equations for the visual velocity field generated by translation of the eye through space. Our results focus on information provided by the movement and deformation of three-dimensional objects and on local flow behavior around a fixated point. All of these issues are addressed mathematically in terms of definite equations for the optic flow. This formal characterization of the visual information presented to the observer is then considered in parallel with other sensory cues to self-motion in order to see how these contribute to the effective use of visual motion parallax, and how parallactic flow can, conversely, contribute to the sense of self-motion. This article will focus on a central case, for understanding of motion parallax in spacious real-world environments, of monocular visual cues observable during pure horizontal translation of the eye through a stationary environment. We suggest that the global optokinetic stimulus associated with visual motion parallax must converge in significant fashion with vestibular and proprioceptive pathways that carry signals related to self-motion. Suggestions of experiments to test some of the predictions of this study are made.  相似文献   

4.
This article addresses the intersection between perceptual estimates of head motion based on purely vestibular and purely visual sensation, by considering how nonvisual (e.g. vestibular and proprioceptive) sensory signals for head and eye motion can be combined with visual signals available from a single landmark to generate a complete perception of self-motion. In order to do this, mathematical dimensions of sensory signals and perceptual parameterizations of self-motion are evaluated, and equations for the sensory-to-perceptual transition are derived. With constant velocity translation and vision of a single point, it is shown that visual sensation allows only for the externalization, to the frame of reference given by the landmark, of an inertial self-motion estimate from nonvisual signals. However, it is also shown that, with nonzero translational acceleration, use of simple visual signals provides a biologically plausible strategy for integration of inertial acceleration sensation, to recover translational velocity. A dimension argument proves similar results for horizontal flow of any number of discrete visible points. The results provide insight into the convergence of visual and vestibular sensory signals for self-motion and indicate perceptual algorithms by which primitive visual and vestibular signals may be integrated for self-motion perception.  相似文献   

5.
6.
The role of the optokinetic reflex (OKR) is that of cooperating with the vestibulo-ocular reflex (VOR) in the task of image stabilization on the retina during head rotations in a stationary visual surround. Since the dynamics of VOR was already well established, it has been possible to make a broad estimation of what the dynamics of OKR should be in order to obtain the performances observed in normal subjects. A mathematical model of OKR has been presented, and the experimental results obtained by Raphan et al. (1977) in the monkey and by Collins et al. (1970) in man were used to validate the model and to obtain a precise estimation of its parameters.Work supported by CNR, Special Project on Biomedical Engineering, grant No. 78.00512.86  相似文献   

7.
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.  相似文献   

8.
The optokinetic reflex (OKR) is a basic visual reflex exhibited by most vertebrates and plays an important role in stabilizing the eye relative to the visual scene. However, the OKR requires that an animal detect moving stripes and it is possible that fish that fail to exhibit an OKR may not be completely blind. One zebrafish mutant, the no optokinetic response c (nrc) has no OKR under any light conditions tested and was reported to be completely blind. Previously, we have shown that OFF-ganglion cell activity can be recorded in these mutants. To determine whether mutant fish with no OKR such as the nrc mutant can detect simple light increments and decrements we developed the visual motor behavioral assay (VMR). In this assay, single zebrafish larvae are placed in each well of a 96-well plate allowing the simultaneous monitoring of larvae using an automated video-tracking system. The locomotor responses of each larva to 30 minutes light ON and 30 minutes light OFF were recorded and quantified. WT fish have a brief spike of motor activity upon lights ON, known as the startle response, followed by return to lower-than baseline activity, called a freeze. WT fish also sharply increase their locomotor activity immediately following lights OFF and only gradually (over several minutes) return to baseline locomotor activity. The nrc mutants respond similarly to light OFF as WT fish, but exhibit a slight reduction in their average activity as compared to WT fish. Motor activity in response to light ON in nrc mutants is delayed and sluggish. There is a slow rise time of the nrc mutant response to light ON as compared to WT light ON response. The results indicate that nrc fish are not completely blind. Because teleosts can detect light through non-retinal tissues, we confirmed that the immediate behavioral responses to light-intensity changes require intact eyes by using the chokh (chk) mutants, which completely lack eyes from the earliest stages of development. In our VMR assay, the chk mutants exhibit no startle response to either light ON or OFF, showing that the lateral eyes mediate this behavior. The VMR assay described here complements the well-established OKR assay, which does not test the ability of zebrafish larvae to respond to changes in light intensities. Additionally, the automation of the VMR assay lends itself to high-throughput screening for defects in light-intensity driven visual responses.Download video file.(107M, mp4)  相似文献   

9.
黄玉斌  邹苏琪  殷梧  王昆  王晗  胡兵 《遗传》2012,34(9):1193-1201
作为视功能检测和与视觉有关突变体筛选的方法, 眼动(Optokinetic response, OKR)和视动(Optomoter response, OMR)行为学是简单有效的视功能检测手段, 广泛用于幼年斑马鱼研究中, 而成年斑马鱼OKR的分析方法却很少有报道。文章介绍了成年斑马鱼眼动反应诱导方式, 以及使用模板匹配(Pattern match)的方法程序跟踪眼部运动, 实现了成年斑马鱼OKR的定量分析。使用该方法, 检测到斑马鱼双眼视觉区对OKR行为的产生具有一定的贡献作用, 并且成年斑马鱼单眼对运动光栅表现出一定的方向敏感性。同样的方法也可适用于幼年斑马鱼的OKR行为学分析。利用此方法初步检测到了钟基因period1b突变体幼鱼的OKR异常。  相似文献   

10.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   

11.

Background

The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion.

Methodology/Principal Findings

We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else''s body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms.

Conclusions/Significance

The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a “vestibular mirror neuron system”.  相似文献   

12.
Our laboratory screens for visual mutants by examining larval eye movements in response to rotating illuminated stripes. This behavior, which is termed an optokinetic response (OKR), is a reflex that appears in zebrafish at the same time as the development of the visual system. The OKR can be accurately measured by 4 d post-fertilization, which is the age when larvae begin foraging for food. The OKR requires approximately 1 min per larva analyzed. After identifying fish with defective eye movements, we conduct secondary screens (such as histological analysis and electroretinography) to identify the subset of fish with disruptions in the function of the outer retina. This paper describes our protocol for the OKR. Our setup is simple to construct and the materials needed are inexpensive. This makes our system especially useful for new undergraduate and graduate students, as well as introductory science lecturers.  相似文献   

13.
Eye movements are very important in order to track an object or to stabilize an image on the retina during movement. Animals without a fovea, such as the mouse, have a limited capacity to lock their eyes onto a target. In contrast to these target directed eye movements, compensatory ocular eye movements are easily elicited in afoveate animals1,2,3,4. Compensatory ocular movements are generated by processing vestibular and optokinetic information into a command signal that will drive the eye muscles. The processing of the vestibular and optokinetic information can be investigated separately and together, allowing the specification of a deficit in the oculomotor system. The oculomotor system can be tested by evoking an optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) or a visually-enhanced vestibulo-ocular reflex (VVOR). The OKR is a reflex movement that compensates for "full-field" image movements on the retina, whereas the VOR is a reflex eye movement that compensates head movements. The VVOR is a reflex eye movement that uses both vestibular as well as optokinetic information to make the appropriate compensation. The cerebellum monitors and is able to adjust these compensatory eye movements. Therefore, oculography is a very powerful tool to investigate brain-behavior relationship under normal as well as under pathological conditions (f.e. of vestibular, ocular and/or cerebellar origin).Testing the oculomotor system, as a behavioral paradigm, is interesting for several reasons. First, the oculomotor system is a well understood neural system5. Second, the oculomotor system is relative simple6; the amount of possible eye movement is limited by its ball-in-socket architecture ("single joint") and the three pairs of extra-ocular muscles7. Third, the behavioral output and sensory input can easily be measured, which makes this a highly accessible system for quantitative analysis8. Many behavioral tests lack this high level of quantitative power. And finally, both performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9.Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8.  相似文献   

14.
Simultaneous object motion and self-motion give rise to complex patterns of retinal image motion. In order to estimate object motion accurately, the brain must parse this complex retinal motion into self-motion and object motion components. Although this computational problem can be solved, in principle, through purely visual mechanisms, extra-retinal information that arises from the vestibular system during self-motion may also play an important role. Here we investigate whether combining vestibular and visual self-motion information improves the precision of object motion estimates. Subjects were asked to discriminate the direction of object motion in the presence of simultaneous self-motion, depicted either by visual cues alone (i.e. optic flow) or by combined visual/vestibular stimuli. We report a small but significant improvement in object motion discrimination thresholds with the addition of vestibular cues. This improvement was greatest for eccentric heading directions and negligible for forward movement, a finding that could reflect increased relative reliability of vestibular versus visual cues for eccentric heading directions. Overall, these results are consistent with the hypothesis that vestibular inputs can help parse retinal image motion into self-motion and object motion components.  相似文献   

15.
Previous studies have shown that neurons within the vestibular nuclei (VN) can faithfully encode the time course of sensory input through changes in firing rate in vivo. However, studies performed in vitro have shown that these same VN neurons often display nonlinear synchronization (i.e. phase locking) in their spiking activity to the local maxima of sensory input, thereby severely limiting their capacity for faithful encoding of said input through changes in firing rate. We investigated this apparent discrepancy by studying the effects of in vivo conditions on VN neuron activity in vitro using a simple, physiologically based, model of cellular dynamics. We found that membrane potential oscillations were evoked both in response to step and zap current injection for a wide range of channel conductance values. These oscillations gave rise to a resonance in the spiking activity that causes synchronization to sinusoidal current injection at frequencies below 25 Hz. We hypothesized that the apparent discrepancy between VN response dynamics measured in in vitro conditions (i.e., consistent with our modeling results) and the dynamics measured in vivo conditions could be explained by an increase in trial-to-trial variability under in vivo vs. in vitro conditions. Accordingly, we mimicked more physiologically realistic conditions in our model by introducing a noise current to match the levels of resting discharge variability seen in vivo as quantified by the coefficient of variation (CV). While low noise intensities corresponding to CV values in the range 0.04-0.24 only eliminated synchronization for low (<8 Hz) frequency stimulation but not high (>12 Hz) frequency stimulation, higher noise intensities corresponding to CV values in the range 0.5-0.7 almost completely eliminated synchronization for all frequencies. Our results thus predict that, under natural (i.e. in vivo) conditions, the vestibular system uses increased variability to promote fidelity of encoding by single neurons. This prediction can be tested experimentally in vitro.  相似文献   

16.
In healthy subjects in the relaxed upward stance and perceiving a virtual visual environment (VVE), we recorded postural reactions to isolated visual and vestibular stimulations or their combinations. Lateral displacements of the visualized virtual scene were used as visual stimuli. The vestibular apparatus was stimulated by application of near-threshold galvanic current pulses to the proc. mastoidei of the temporal bones. Isolated VVE shifts evoked mild, nonetheless clear, body tilts readily distinguished in separate trials; at the same time, postural effects of isolated vestibular stimulation could be detected only after averaging of several trials synchronized with respect to the beginning of stimulation. Under conditions of simultaneous combined presentation of visual and vestibular stimuli, the direction of the resulting postural responses always corresponded to the direction of responses induced by VVE shifts. The contribution of an afferent volley from the vestibular organ depended on the coincidence/mismatch of the direction of motor response evoked by such a volley with the direction of response to visual stimulation. When both types of stimulations evoked unidirectional body tilts, postural responses were facilitated, and the resulting effect was greater than that of simple summation of the reactions to isolated actions of the above stimuli. In the case where isolated galvanic stimulation evoked a response opposite with respect to that induced by visual stimulation, the combined action of these stimuli of different modalities evoked postural responses identical in their magnitude, direction, and shape to those evoked by isolated visual stimulation. The above findings allow us to conclude that the effects of visual afferent input on the vertical posture under conditions of our experiments clearly dominate. In general, these results confirm the statement that neuronal structures involved in integrative processing of different afferent volleys preferably select certain type of afferentation carrying more significant or more detailed information on displacements (including oscillations) of the body in space.  相似文献   

17.
Oculomotor responses to combined optokinetic and vestibular stimulations in labyrinthine and cerebellar defective patients are discussed in terms of parametric changes in a model describing the interaction between the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR). By making a few reasonable hypotheses about model parameter variations in relation to the type of pathology, the experimental results obtained by several authors can correctly be predicted and explained by the model. The model can therefore be used to define a set of parameters giving an estimate of the state of the system subserving VOR-OKR interaction in the examined patients. The model is also shown to be a powerful tool to assess the validity and the diagnostic significance of the procedures used to test VOR-OKR interaction.Work supported by CNR, Rome, Italy. Some results reported in this paper have been previously presented at the Eighth Extraordinary Meeting of the Bàràny Society, Basle, June 22th-25th, 1982.  相似文献   

18.
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.  相似文献   

19.
A mathematical model for visual-vestibular interaction during body rotation in an illuminated visual surround is obtained by combining a previous model of the optokinetic reflex (OKR) with a simplified model of the vestibulo-ocular reflex (VOR). OKR is activated by the slip of the image of the external world on the retina, and represents a negative feedback loop around VOR. For large retinal slip velocities OKR behaves as a basically non-linear system. The validity of the model is proved via computer simulation by comparing predicted responses with the experimental results obtained in man by Koenig et al. (1978) in different situations of visual-vestibular interaction.Work supported by C.N.R. (Rome, Italy), Special Project on Piomedical Engineering, Grant No. 79.01255.86  相似文献   

20.
Some visual, vestibular and proprioceptive reflexes which contribute to gaze (head + eye) stabilization were quantified in the chameleon. All the reflexes were analysed in the horizontal plane, and the visual reflexes were also studied in the vertical plane. In restrained-head animals, both the optokinetic nystagmus (OKN) and the vestibulo-ocular reflex (VOR) had low gains. In free-head animals, the head (opto-collic or vestibulo-collic reflex) and eye (OKN or VOR) responses added their effects, thus improving gaze stabilization, especially during vestibular stimulation. Cervical stimulation provoked both a cervico-ocular reflex (COR) in the compensatory direction and a large number of saccades. The saccadic response was especially marked in the presence of patterned visual surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号