首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical potentials were measured as a function of myofilament packing density in crayfish striated muscle. The A-band striations are supramolecular smectic B1 lattice assemblies of myosin filaments and the I-band striations are nematic liquid crystals of actin filaments. Both A- and I-bands generate potentials derived from the fixed charge that is associated with structural proteins. In the reported experiments, filament packing density was varied by osmotically reducing lattice volume. The electrochemical potentials were measured from the A- and I-bands in the relaxed condition over a range of lattice volumes. From the measurements of relative cross-sectional area, unit-cell volume (obtained by low-angle x-ray diffraction) and previously determined effective linear charge densities (Aldoroty, R.A., N.B. Garty, and E.W. April, 1985, Biophys. J., 47:89-96), Donnan potentials can be predicted for any amount of compression. In the relaxed condition, the predicted Donnan potentials correspond to the measured electrochemical potentials. In the rigor condition, however, a net increase in negative charge associated with the myosin filament is observed. The predictability of the data demonstrates the applicability of Donnan equilibrium theory to the measurement of electrochemical potentials from liquid-crystalline systems. Moreover, the relationship between filament spacing and the Donnan potential is consistent with the concept that surface charge provides the necessary electrostatic force to stabilize the myofilament lattice.  相似文献   

2.
Equilibrium distribution of ions in a muscle fiber.   总被引:4,自引:2,他引:2       下载免费PDF全文
  相似文献   

3.
The myosin crossbridge array, positions of non-crossbridge densities on the backbone, and the A-band "end filaments" have been compared in chemically skinned, unfixed, uncryoprotected relaxed, and rigor plaice fin muscles using the freeze-fracture, deep-etch, rotary-shadowing technique. The images provide a direct demonstration of the helical packing of the myosin heads in situ in relaxed muscle and show rearrangements of the myosin heads, and possibly of other myosin filament proteins, when the heads lose ATP on going into rigor. In the H-zone these changes are consistent with crossbridge changes previously shown by others using freeze-substitution. In addition, new evidence is presented of protein rearrangements in the M-region (bare zone), associated with the transition from the relaxed to the rigor state, including a 27-nm increase in the apparent width of the M-region. This is interpreted as being mostly due to loss or rearrangement of a nonmyosin (M9) protein component at the M-region edge. The structure and titin periodicity of the end-filaments are described, as are suggestions of titin structure on the myosin filament backbone.  相似文献   

4.
Repulsive pressure in the A-band filament lattice of relaxed frog skeletal muscle has been measured as a function of interfilament spacing using an osmotic shrinking technique. Much improved chemical skinning was obtained when the muscles were equilibrated in the presence of EGTA before skinning. The lattice shrank with increasing external osmotic pressure. At any specific pressure, the lattice spacing in relaxed muscle was smaller than that of muscle in rigor, except at low pressures where the reverse was found. The lattice spacing was the same in the two states at a spacing close to that found in vivo. The data were consistent with an electrostatic repulsion over most of the pressure range. For relaxed muscle, the data lay close to electrostatic pressure curves for a thick filament charge diameter of approximately 26 nm, suggesting that charges stabilizing the lattice are situated about midway along the thick filament projections (HMM-S1). At low pressures, observed spacings were larger than calculated, consistent with the idea that thick filament projections move away from the filament backbone. Under all conditions studied, relaxed and rigor, at short and very long sarcomere lengths, the filament lattice could be modeled by assuming a repulsive electrostatic pressure, a weak attractive pressure, and a radial stiffness of the thick filaments (projections) that differed between relaxed and rigor conditions. Each thick filament projection could be compressed by approximately 5 or 2.6 nm requiring a force of 1.3 or 80 pN for relaxed and rigor conditions respectively.  相似文献   

5.
Donnan potentials from A-bands and I-bands were measured as a function of sarcomere length in skinned long-tonic muscle fibers of the crayfish. These measurements were made using standard electrophysiological technique. Simultaneously, the relative cross-sectional area of the fibers was determined. Lattice plane spacings and hence unit-cell volumes were determined by low-angle x-ray diffraction. At a sarcomere length at which the myosin filaments and actin filaments nominally do not overlap, measurements of potential, relative cross-sectional area, and unit-cell volume were used in conjunction with Donnan equilibrium theory to calculate the effective linear charge densities along the myosin filament (6.6 X 10(4) e-/mu) and actin filament (6.8 X 10(3) e-/mu). Using these linear charge densities, unit-cell volumes and Donnan equilibrium theory, an algorithm was developed to predict A-band and I-band potentials at any sarcomere length. Over the range of sarcomere lengths investigated, the predicted values coincide with the experimental data. The ability of the model to predict the data demonstrates the applicability of Donnan equilibrium theory to measurements of electrochemical potential from liquid-crystalline systems.  相似文献   

6.
Here we present evidence that strongly suggests that the well-documented phenomenon of A-band shortening in Limulus telson muscle is activation dependent and reflects fragmentation of thick filaments at their ends. Calcium activation of detergent-skinned fiber bundles of Limulus telson muscle results in large decreases in A-band (from 5.1 to 3.3 microns) and thick filament (from 4.1 to 3.3 microns) lengths and the release of filament end fragments. In activated fibers, maintained stretched beyond overlap of thick and thin filaments, these end fragments are translocated to varying depths within the I-bands. Here they are closely associated with fine filamentous structures that also span the gap between A- and I-bands and attach to the distal one-third of the thick filaments. End-fragments are rarely, if ever, present in similarly stretched and skinned, but unstimulated fibers, although fine "gap filaments" persist. Negatively stained thick filaments, separated from skinned, calcium-activated, fiber bundles, allowed to shorten freely, are significantly shorter than those obtained from unstimulated fibers, but are identical to the latter with respect to both the surface helical array of myosin heads and diameters. Many end-fragments are present on grids containing thick filaments from activated fibers; few, if any, on those from unstimulated fibers. SDS-PAGE shows no evidence of proteolysis due to activation and demonstrates the presence of polypeptides with very high molecular weights in the preparations. We suggest that thick filament shortening is a direct result of activation in Limulus telson muscle and that it occurs largely by breakage within a defined distal region of each polar half of the filament. It is possible that at least some of the fine "gap filaments" are composed of a titin-like protein. They may move the activation-produced, fragmented ends of thick filaments to which they attach, into the I-bands by elastic recoil, in highly stretched fibers.  相似文献   

7.
Non-specific termination of simian virus 40 DNA replication.   总被引:4,自引:0,他引:4  
Axial X-ray diffraction patterns have been studied from relaxed, contracted and rigor vertebrate striated muscles at different sarcomere lengths to determine which features of the patterns depend on the interaction of actin and myosin. The intensity of the myosin layer lines in a live, relaxed muscle is sometimes less in a stretched muscle than in the muscle at rest-length; the intensity depends not only on the sarcomere length but on the time that has elapsed since dissection of the muscle. The movement of cross-bridges giving rise to these intensity changes are not caused solely by the withdrawal of actin from the A-band.When a muscle contracts or passes into rigor many changes occur that are independent of the sarcomere length: the myosin layer lines decrease in intensity to about 30% of their initial value when the muscle contracts, and disappear completely when the muscle passes into rigor. Both in contracting and rigor muscles at all sarcomere lengths the spacings of the meridional reflections at 143 Å and 72 Å are 1% greater than from a live relaxed muscle at rest-length. It is deduced that the initial movement of cross-bridges from their positions in resting muscle does not depend on the interaction of each cross-bridge with actin, but on a conformational change in the backbone of the myosin filament: occurring as a result of activation. The possibility is discussed that the conformational change occurs because the myosin filament, like the actin filament, has an activation control mechanism. Finally, all the X-ray diffraction patterns are interpreted on a model in which the myosin filament can exist in one of two possible states: a relaxed state which gives a diffraction pattern with strong myosin layer lines and an axial spacing of 143.4 Å, and an activated state which gives no layer lines but a meridional spacing of 144.8 Å.  相似文献   

8.
Molecular origin of pH-dependence of rigor tension in chemically skinned fibre bundles of rabbit psoas muscle was studied with the help of X-ray diffraction technique. It was found that a shift of pH from the neutral value of about 7.0 either to basic or to acidic regions by one unit is accompanied by changes of relative intensities in a number of meridional reflections. These effects are explained as the result of pH-induced detachment of subfragments-2 of myosin molecules from the thick filament surface. The data obtained indicate that force generation in muscle may be caused by the structural changes of subfragments-2 of myosin molecules.  相似文献   

9.
The structures of the actin and myosin filaments of striated muscle have been studied extensively in the past by sectioning of fixed specimens. However, chemical fixation alters molecular details and prevents biochemically induced structural changes. To overcome these problems, we investigate here the potential of cryosectioning unfixed muscle. In cryosections of relaxed, unfixed specimens, individual myosin filaments displayed the characteristic helical organization of detached cross-bridges, but the filament lattice had disintegrated. To preserve both the filament lattice and the molecular structure of the filaments, we decided to section unfixed rigor muscle, stabilized by actomyosin cross-bridges. The best sections showed periodic, angled cross-bridges attached to actin and their Fourier transforms displayed layer lines similar to those in x-ray diffraction patterns of rigor muscle. To preserve relaxed filaments in their original lattice, unfixed sections of rigor muscle were picked up on a grid and relaxed before negative staining. The myosin and actin filaments showed the characteristic helical arrangements of detached cross-bridges and actin subunits, and Fourier transforms were similar to x-ray patterns of relaxed muscle. We conclude that the rigor structure of muscle and the ability of the filament lattice to undergo the rigor-relaxed transformation can be preserved in unfixed cryosections. In the future, it should be possible to carry out dynamic studies of active sacromeres by cryo-electron microscopy.  相似文献   

10.
Rapid freezing followed by freeze-substitution has been used to study the ultrastructure of the myosin filaments of live and demembranated frog sartorius muscle in the states of relaxation and rigor. Electron microscopy of longitudinal sections of relaxed specimens showed greatly improved preservation of thick filament ultrastructure compared with conventional fixation. This was revealed by the appearance of a clear helical arrangement of myosin crossbridges along the filament surface and by a series of layer line reflections in computed Fourier transforms of sections, corresponding to the layer lines indexing on a 43 nm repeat in X-ray diffraction patterns of whole, living muscles. Filtered images of single myosin filaments were similar to those of negatively stained, isolated vertebrate filaments and consistent with a three-start helix. M-line and other non-myosin proteins were also very well preserved. Rigor specimens showed, in the region of overlapping myosin and actin filaments, periodicities corresponding to the 36, 24, 14.4 and 5.9 nm repeats detected in X-ray patterns of whole muscle in rigor; in the H-zone they showed a disordered array of crossbridges. Transverse sections, whose Fourier transforms extend to the (3, 0) reflection, supported the view, based on X-ray diffraction and conventional electron microscopy, that in the overlap zone of relaxed muscle most of the crossbridges are detached from the thin filaments while in rigor they are attached. We conclude that the rapid freezing technique preserves the molecular structure of the myofilaments closer to the in vivo state (as monitored by X-ray diffraction) than does normal fixation.  相似文献   

11.
By means of electron microscopy the longitudinal sections of chemically skinned fibres of rigorised rabbit psoas muscle have been examined at pH of rigorising solutions equal to 6, 7, 8 (I = 0.125) and ionic strengths equal to 0.04, 0.125, 0.34 (pH 7.0). It has been revealed that at pH 6.0 the bands of minor proteins localization in A-disks were seen very distinctly, while at pH 7.0 and I = 0.125 these bands can be revealed only by means of antibody labelling technique. At the ionic strength of 0.34 (pH 7.0) the periodicity of 14.3 nm in thick filaments was clearly observed, which was determined by packing of the myosin rods into the filament shaft and of the myosin heads (cross-bridges) on the filament surface. The number of cross-bridge rows in the filament equals 102. A new scheme of myosin cross-bridge distribution in thick filaments of rabbit psoas muscle has been suggested according to which two rows of cross-bridges at each end of a thick filament are absent. The filament length equals 1.64 +/- 0.01 micron. It has been shown that the length of thick filament as well as the structural organization of their end regions in rabbit psoas muscle and frog sartorius one are different.  相似文献   

12.
Myosin filament structure in vertebrate smooth muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
The in vivo structure of the myosin filaments in vertebrate smooth muscle is unknown. Evidence from purified smooth muscle myosin and from some studies of intact smooth muscle suggests that they may have a nonhelical, side-polar arrangement of crossbridges. However, the bipolar, helical structure characteristic of myosin filaments in striated muscle has not been disproved for smooth muscle. We have used EM to investigate this question in a functionally diverse group of smooth muscles (from the vascular, gastrointestinal, reproductive, and visual systems) from mammalian, amphibian, and avian species. Intact muscle under physiological conditions, rapidly frozen and then freeze substituted, shows many myosin filaments with a square backbone in transverse profile. Transverse sections of fixed, chemically skinned muscles also show square backbones and, in addition, reveal projections (crossbridges) on only two opposite sides of the square. Filaments gently isolated from skinned smooth muscles and observed by negative staining show crossbridges with a 14.5-nm repeat projecting in opposite directions on opposite sides of the filament. Such filaments subjected to low ionic strength conditions show bare filament ends and an antiparallel arrangement of myosin tails along the length of the filament. All of these observations are consistent with a side-polar structure and argue against a bipolar, helical crossbridge arrangement. We conclude that myosin filaments in all smooth muscles, regardless of function, are likely to be side-polar. Such a structure could be an important factor in the ability of smooth muscles to contract by large amounts.  相似文献   

13.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

14.
Structural changes of contractile proteins were examined by millisecond time-resolved two-dimensional x-ray diffraction recordings during relaxation of skinned skeletal muscle fibers from rigor after caged ATP photolysis. It is known that the initial dissociation of the rigor actomyosin complex is followed by a period of transient active contraction, which is markedly prolonged in the presence of ADP by a mechanism yet to be clarified. Both single-headed (overstretched muscle fibers with exogenous myosin subfragment-1) and two-headed (fibers with full filament overlap) preparations were used. Analyses of various actin-based layer line reflections from both specimens showed the following: 1), The dissociation of the rigor actomyosin complex was fast and only modestly decelerated by ADP and occurred in a single exponential manner without passing through any detectable transitory state. Its ADP sensitivity was greater in the two-headed preparation but fell short of explaining the large ADP effect on the transient active contraction. 2), The decay of the activated state of the thin filament followed the time course of tension more closely in an ADP-dependent manner. These results suggest that the interplay between the reattached active myosin heads and the thin filament is responsible for the prolonged active contraction in the presence of ADP.  相似文献   

15.
The repulsive pressure between filaments in the lattice of skinned rabbit and frog striated muscle in rigor has been measured as a function of interfilament spacing, using the osmotic pressure generated by solutions of large, uncharged polymeric molecules (dextran and polyvinylpyrrolidone). The pressure/spacing measurements have been compared with theoretically derived curves for electrostatic pressure. In both muscles, the major part of the experimental curves (100-2,000 torr) lies in the same region as the electrostatic pressure curves, providing that a thick filament charge diameter of approximately 30 nm in rabbit and approximately 26 nm in frog is assumed. In chemically skinned or glycerol-extracted rabbit muscle the fit is good; in chemically skinned frog sartorius and semitendinosus muscle the fit is poor, particularly at lower pressures where a greater spacing is observed than expected on theoretical grounds. The charge diameter is much larger than the generally accepted value for thick filament backbone diameter. This may be because electron microscope results have underestimated the amount of filament shrinkage during sample preparation, or because most of the filament charge is located at some distance from the backbone surface, e.g., on HMM-S2. Decreasing the ionic strength of the external solution, changing the pH, and varying the sarcomere length all give pressure/spacing changes similar to those expected from electrostatic pressure calculations. We conclude that over most of the external pressure range studied, repulsive pressure in the lattice is predominantly electrostatic.  相似文献   

16.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.  相似文献   

17.
We advance a structural model to account for the rapid elastic element seen in mechanical transient experiments on vertebrate skeletal muscle (A.F. Huxley & Simmons 1971 Nature, Lond. 233, 533-538). In contrast to other crossbridge models, ours does not envisage a myosin rod made up of two rigid portions connected by a hinge, but rather a gradually bending rod portion connecting the heads to the thick filament shaft. We propose that, in relaxed muscle, the subfragment 2 (S2) portion of the myosin rod is bound to the thick filament shaft by ionic interactions analogous to those between the light meromyosin (LMM) portions of the rod that constitute the body of the shaft. These interactions probably involve the alternating zones of positive and negative charge seen in myosin rod amino acid sequences. As the crossbridge cycle that generates tension begins, we propose that part of S2 detaches from the thick filament shaft and bends to enable the myosin head to attach to actin. When tension develops in the crossbridge, the S2 is straightened and more of it becomes detached from the shaft so that the junction between S2 and the myosin heads moves 3-4 nm axially. As tension declines at the end of the crossbridge stroke, we propose that S2 rebinds to the thick filament shaft and that this provides the restoring force to return the junction of the heads and S2 to its original axial position. Thus this movement would have the characteristics of an elastic element; detailed calculations indicate that it would have properties similar to those observed experimentally. Furthermore, this model can account for the radial attractive force seen in rigor and in contracting muscle, the decrease in stiffness when interfilament spacing is increased in skinned muscle, and the increased rate of proteolysis observed at the S2-LMM junction in contracting muscle.  相似文献   

18.
The intensity of light scattered by chemically skinned rabbit psoas fibers in relaxed, rigor, and activated states was monitored at 90 degrees to the incident beam. In the relaxed state, scattering varied in proportion to the volume of muscle in the beam. Scattering increased to 2.3 times the resting value when rigor was induced by withdrawal of MgATP or when the myofibrils were activated by the caffeine-induced release of Ca from the sarcoplasmic reticulum. The rigor-induced increase in scattering decreased monotonically when MgATP was reintroduced stepwise (0-100 microM). This decrease in scattering was accompanied by an increase in tension up to an optimum MgATP level of approximately 10 microM, and then tension decreased at higher concentrations (10-100 microM). The increase in scattering during both rigor and activation was dependent upon fiber length. At lengths when thick-thin filament overlap was near zero, the light signal due to rigor and activation fell to within 10% of the signal for the relaxed fiber at that length. The signal during rigor increased only minimally (approximately 10%) when stretch (approximately 1%) was applied. This increase in signal was small despite a measured 5- to 10-fold increase in tension and an estimated twofold increase in stiffness. Thus, the increased light scattering caused by rigor and activation depends on filament overlap and not tension, stiffness, or substrate binding.  相似文献   

19.
A single-site mutation of the flight-muscle-specific actin gene of Drosophila melanogaster causes a substitution of glutamic acid 93 by lysine in all the actin encoded in the indirect flight muscle (IFM). In these Act88FE93K mutants, myofibrillar bundles of thick and thin filaments are present but lack Z-discs and all sarcomeric repeats. Dense filament bundles, which are probably aberrant Z-discs, are seen in myofibrils of pupal flies, but early in adult life these move to the periphery of the fibrils and are not seen in skinned adult fibres. Consistent with this observation, alpha-actinin and other high molecular weight proteins, possibly associated with Z-discs, are not detected on SDS/polyacrylamide gels or Western blots of skinned adult IFM. The mutation lies at the beginning of a loop in the small domain of actin, near the myosin binding region. However, that the mutant actin binds myosin heads is shown by (1) rigor crossbridges in electron micrographs, (2) the appropriate rise in stiffness when ATP is withdrawn in mechanical experiments, and (3) equal protection against tryptic digestion provided by rigor binding between actin and myosin in both wild-type and mutant fibres. Reversal of rigor chevron angle along some thin filaments reflects reversal of thin-filament polarity due to lattice disorder. The absence of Z-discs, alpha-actinin and two high molecular weight proteins, and binding studies by others, suggest that the substitution at residue 93 affects the binding of the mutant actin to a protein, possibly alpha-actinin, which is necessary for Z-disc assembly or maintenance.  相似文献   

20.
Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl2 or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号