首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of liver cancer cell lines requires death receptor-5 (DR5)-dependent permeabilization of lysosomal membranes. Ligated DR5 triggers recruitment of the proapoptotic proteins Bim and Bax to lysosomes, releasing cathepsin B into the cytosol where it mediates mitochondria membrane permeabilization and activation of executioner caspases. Despite the requirement for lysosome membrane permeabilization during TRAIL-induced apoptosis, little is known about the mechanism that controls recruitment of Bim and Bax to lysosomal membranes. Here we report that TRAIL induces recruitment of the multifunctional sorting protein phosphofurin acidic cluster sorting protein-2 (PACS-2) to DR5-positive endosomes in Huh-7 cells where it forms an immunoprecipitatable complex with Bim and Bax on lysosomal membranes. shRNA-targeted knockdown of PACS-2 prevents recruitment of Bim or Bax to lysosomes, blunting the TRAIL-induced lysosome membrane permeabilization. Consistent with the reduced lysosome membrane permeabilization, shRNA knockdown of PACS-2 in Huh-7 cells reduced TRAIL-induced apoptosis and increased clonogenic cell survival. The determination that recombinant PACS-2 bound Bim but not Bax in vitro and that shRNA knockdown of Bim blocked Bax recruitment to lysosomes suggests that TRAIL/DR5 triggers endosomal PACS-2 to recruit Bim and Bax to lysosomes to release cathepsin B and induce apoptosis. Together, these findings provide insight into the lysosomal pathway of apoptosis.  相似文献   

2.
Using cationic liposomes to mediate gene delivery by transfection has the advantages of improved safety and simplicity of use over viral gene therapy. Understanding the mechanism by which cationic liposome:DNA complexes are internalized and delivered to the nucleus should help identify which transport steps might be manipulated in order to improve transfection efficiencies. We therefore examined the endocytosis and trafficking of two cationic liposomes, DMRIE-C and Lipofectamine LTX, in CHO cells. We found that DMRIE-C-transfected DNA is internalized via caveolae, while LTX-transfected DNA is internalized by clathrin-mediated endocytosis, with both pathways converging at the late endosome or lysosome. Inhibition of microtubule-dependent transport with nocodazole revealed that DMRIE-C:DNA complexes cannot enter the cytosol directly from caveosomes. Lysosomal degradation of transfected DNA has been proposed to be a major reason for poor transfection efficiency. However, in our system dominant negatives of both Rab7 and its effector RILP inhibited late endosome to lysosome transport of DNA complexes and LDL, but did not affect DNA delivery to the nucleus. This suggests that DNA is able to escape from late endosomes without traversing lysosomes and that caveosome to late endosome transport does not require Rab7 function. Lysosomal inhibition with chloroquine likewise had no effect on transfection product titers. These data suggest that DMRIE-C and LTX transfection complexes are endocytosed by separate pathways that converge at the late endosome or lysosome, but that blocking lysosomal traffic does not improve transfection product yields, identifying late endosome/lysosome to nuclear delivery as a step for future study.  相似文献   

3.
The asialoglycoprotein receptor (ASGPr) on hepatocytes plays a role in the clearance of desialylated proteins from the serum. Although its sugar preference (N-acetylgalactosamine (GalNAc) > galactose) and the effects of ligand valency (tetraantennary > triantennary > diantennary > monoantennary) and sugar spacing (20 A 10 A 4 A) are well documented, the effect of particle size on recognition and uptake of ligands by the receptor is poorly defined. In the present study, we assessed the maximum ligand size that still allows effective processing by the ASGPr of mouse hepatocytes in vivo and in vitro. Here too, we synthesized a novel glycolipid, which possesses a highly hydrophobic steroid moiety for stable incorporation into liposomes, and a triantennary GalNAc(3)-terminated cluster glycoside with a high nanomolar affinity (2 nm) for the ASGPr. Incorporation of the glycolipid into small (30 nm) [(3)H]cholesteryl oleate-labeled long circulating liposomes (1-50%, w/w) caused a concentration-dependent increase in particle clearance that was liver-specific (reaching 85 +/- 7% of the injected dose at 30 min after injection) and mediated by the ASGPr on hepatocytes, as shown by competition studies with asialoorosomucoid in vivo. By using glycolipid-laden liposomes of various sizes between 30 and 90 nm, it was demonstrated that particles with a diameter of >70 nm could no longer be recognized and processed by the ASGPr in vivo. This threshold size for effective uptake was not related to the physical barrier raised by the fenestrated sinusoidal endothelium, which shields hepatocytes from the circulation, because similar results were obtained by studying the uptake of liposomes on isolated mouse hepatocytes in vitro. From these data we conclude that in addition to the species, valency, and orientation of sugar residues, size is also an important determinant for effective recognition and processing of substrates by the ASGPr. Therefore, these data have important implications for the design of ASGPr-specific carriers that are aimed at hepatocyte-directed delivery of drugs and genes.  相似文献   

4.
Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular imaging.  相似文献   

5.
Synthetic gene transfer vectors can be optimised by combining DNA-binding peptides, cell surface receptor ligands, and fusogenic and nuclear localisation peptides. We have used the phage display technique to identify ligands of the tracheal epithelial cell line CFT-2. The peptides harboured by two phages were selected for transfection studies: peptide 7 (GRGDGDV) that contained the integrin-binding motif RGD, and peptide 9 (RFDSLKV) that was found in six out of 24 phages analysed. Both peptides, fused with the DNA-binding peptide P2 (SPKRSPKRSPKR), enhanced transfection efficiency in cell lines CFT-2, NT-1, NIH-3T3 and ECV-304. In particular, peptide P2-7 increased transfection efficiency from 36. 5% to 44.8% in NIH-3T3 cells and from 10.9% to 14.4% in CFT-2 cells, when compared to transfections performed with peptide P2. Two fusogenic peptides, HA (GLFEAIAEFIEGGWEGLIEGC) and JTS-1 (GLFEALLELLESLWELLLEA), were then added to the complexes and shown to improve transfection efficiency to the same extent. For instance, when combined to peptide P2-7, transfection levels of 54.1% and 55. 2% were attained in NIH-3T3 cells with HA and JTS-1, respectively. The addition of the ligands and fusogenic peptides thus allowed us to construct greatly improved transfection reagents.  相似文献   

6.
The use of asialo GM1-containing small unilamellar liposome preparations in vivo caused a 2.8-fold increase in the uptake by the liver as compared with the control (neutral) preparations (without asialo GM1). The uptake of negatively charged dicetylphosphate and dipalmitoyl phosphatidic acid-containing small unilamellar liposomes was found to be 1.6-and 1.8-fold respectively higher than that of the neutral preparations. In studies with isolated liver cell types, inhibition of the galactosylated liposome uptake by asialofetuin indicated a possible involvement of hepatic galactose receptors in the recognition of asialo GM1 liposomes by the hepatic parenchymal cells, which in turn were found to be mainly responsible for the enhanced incorporation of these liposomes in the liver. Sub-cellular distribution studies with isolated liver cell types indicated lysosomal localization of the liposomes both in parenchymal and nonparenchymal cells, and it has been proposed that the asialo GM1 liposomes are cointernalized with asialofetuin through a common lysosomal route of ligand internalization.  相似文献   

7.
The delivery of "suicide" herpes simplex virus type-1 thymidine kinase gene (tk) into tumor cells, followed by treatment with synthetic nucleotide analogues (gancyclovir, acyclovir), is a perspective approach to cancer therapy. Serious limitations in employment of the existing means of gene delivery into target cells constitute the main obstacle for cancer gene therapy development. In the present work a possibility to use a nonviral gene delivery system is shown based on the employment of lysine rich peptide K8 and amphipathic peptide JTS-1 for transferring tk gene into human hepatoma HepG2 cells. Cationic peptide K8 forms compact complexes with plasmid DNA, and JTS-1 acts as a pH-dependent endosomal releasing agent. Transfection of HepG2 cells by tk expression vector coupled with K8/JTS-1 peptides, followed by acyclovir administration (50-100 micrograms/ml) for 24 h leads to cell cycle arrest in the G1/S checkpoint of some cells, which eventually die through apoptosis. Treatment of HepG2 cells with higher acyclovir concentration (200 micrograms/ml) additionally results in a nonspecific toxic effect. The above results demonstrate the efficacy of K8/JTS-1 delivery system for the "suicide" cancer gene therapy, and may be regarded as a basis for further elaboration of "suicide" cancer approaches in vivo.  相似文献   

8.
In this study, we present the design and synthesis of an antisense peptide nucleic acid (asPNA) prodrug, which displays an improved biodistribution profile and an equally improved capacity to reduce the levels of target mRNA. The prodrug, K(GalNAc)(2)-asPNA, comprised of a 14-mer sequence complementary to the human microsomal triglyceride transfer protein (huMTP) gene, conjugated to a high-affinity tag for the hepatic asialoglycoprotein receptor (K(GalNAc)(2)). The prodrug was avidly bound and rapidly internalized by HepG2s. After iv injection into mice, K(GalNAc)(2)-asPNA accumulated in the parenchymal liver cells to a much greater extent than nonconjugated PNA (46% +/- 1% vs 3.1% +/- 0.5% of the injected dose, respectively). The prodrug was able to reduce MTP mRNA levels in HepG2 cells by 35-40% (P < 0.02) at 100 nM in an asialoglycoprotein receptor- and sequence-dependent fashion. In conclusion, hepatocyte-targeted PNA prodrugs combine a greatly improved tropism with an enhanced local intracellular availability and activity, making them attractive therapeutics to lower the expression level of hepatic target genes such as MTP.  相似文献   

9.
Specific direction of liposomes bearing an asialofetuin sugar chain (AFSC) to liver parenchymal cells was examined both in vivo and in vitro. The AFSC-bearing liposomes were preferentially recovered in the liver within several minutes after an intravenous injection into mice and were found to be predominantly localized in mitochondrial-lysosomal fraction. The massive distribution of the AFSC-liposomes in this fraction was also confirmed by using a lysosomal protease inhibitor, E-64-d. In isolated rat hepatocytes, the uptake of AFSC-liposomes was increased 2-3-fold as compared with the control liposomes without AFSC. Thus liposomes bearing AFSC would be useful to target enzymes to liver lysosomes.  相似文献   

10.
Stable BHK cell lines inducibly expressing wild-type or dominant negative mutant forms of the rab7 GTPase were isolated and used to analyze the role of a rab7-regulated pathway in lysosome biogenesis. Expression of mutant rab7N125I protein induced a dramatic redistribution of cation-independent mannose 6–phosphate receptor (CI-MPR) from its normal perinuclear localization to large peripheral endosomes. Under these circumstances ~50% of the total receptor and several lysosomal hydrolases cofractionated with light membranes containing early endosome and Golgi markers. Late endosomes and lysosomes were contained exclusively in well-separated, denser gradient fractions. Newly synthesized CI-MPR and cathepsin D were shown to traverse through an early endocytic compartment, and functional rab7 was crucial for delivery to later compartments. This observation was evidenced by the fact that 2 h after synthesis, both markers were more prevalent in fractions containing light membranes. In addition, both were sensitive to HRP-DAB– mediated cross-linking of early endosomal proteins, and the late endosomal processing of cathepsin D was impaired. Using similar criteria, the lysosomal membrane glycoprotein 120 was not found accumulated in an early endocytic compartment. The data are indicative of a post-Golgi divergence in the routes followed by different lysosome-directed molecules.  相似文献   

11.
Asymmetrical lysine dendrimers are promising as vectors for delivering gene expression constructs into mammalian cells. The condensing, protective, and transfection properties were studied for pentaspherical lysine dendrimer D5 and its analog D5C10, modified with capric acid residues at the outer sphere; in addition, the transfection activity was assayed for complexes DNA-dendrimer-endosomolytic peptide JTS-1. Fatty acid residues incorporated in lysine dendrimers proved to improve their ability to bind DNA, to protect DNA from nuclease degradation, and to ensure its transfer into the nucleus. Peptide JTS-1 introduced in DNA-dendrimer complexes significantly increased their transfection activity. The potentiating effect of JTS-1 was especially high with the DNA-D5C10 complex. An excess of JTS-1 changed the structure of the complexes and reduced their transfection activity. It was assumed that dendrimers D5 and D5C10 are promising vectors for delivering DNA to eukaryotic cells and provide a basis for constructing more refined nonvirus module carriers.  相似文献   

12.
Asymmetrical lysine dendrimers are promising as vectors for delivering gene expression constructs into mammalian cells. The condensing, protective, and transfection properties were studied for pentaspherical lysine dendrimer D5 and its analog D5C10, modified with capric acid residues at the outer sphere; in addition, the transfection activity was assayed for complexes DNA-dendrimer-endosomolytic peptide JTS-1. Fatty acid residues incorporated in lysine dendrimers proved to improve their ability to bind DNA, to protect DNA from nuclease degradation, and to ensure its transfer into the nucleus. Peptide JTS-1 introduced in DNA-dendrimer complexes significantly increased their transfection activity. The potentiating effect of JTS-1 was especially high with the DNA-D5C10 complex. An excess of JTS-1 changed the structure of the complexes and reduced their transfection activity. It was assumed that dendrimers D5 and D5C10 are promising vectors for DNA delivery to eukaryotic cells and provide a basis for constructing more refined nonviral module carriers.  相似文献   

13.
Using liposomes differing in size and lipid composition, we have studied the uptake characteristics of the liver parenchymal and Kupffer cells. Desferal labeled with iron-59 was chosen as a radiomarker for the liposomal content, because Desferal in its free form does not cross cellular membranes. At various time intervals after an intravenous injection of liposomes into mice, the liver was perfused with collagenase, and the cells were separated in a Percoll gradient. It was found that large multilamellar liposomes (diameter of about 0.5 μm) were mainly taken up by the Kupffer cells. For these large liposomes, the rate of uptake by Kupffer cells was rapid, with maximum uptake at around 2 hours after liposome injection. Unexpectedly, small unilamellar liposomes (diameter of about 0.08 μm) were less effectively taken up by Kupffer cells, and the rate of uptake was slow, with a maximum uptake at about 10 hours after liposome injection. In contrast, parenchymal cells were more effective in taking up small liposomes and the uptake of large liposomes was negligible. In addition, liposomes made with a galactolipid as part of the lipid constituents appeared to have higher affinity to parenchymal cells than liposomes made without the galactolipid. These findings should be of importance in designing suitable liposomes for drug targeting.  相似文献   

14.
The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein-2 (LAMP-2) and LAMP-1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP-1 and LAMP-2 (LAMP−/−), low-density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild-type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP-2 deficient liver and that overexpression of LAMP-2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP-2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP-2, but not by LAMP-1. The LAMP-2 luminal domain, the membrane-proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP-2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone-mediated autophagy function of LAMP-2.  相似文献   

15.
Although the majority of exogenous cholesterol and cholesterol ester enters the cell by LDL-receptor-mediated endocytosis and the lysosomal pathway, the assumption that cholesterol transfers out of the lysosome by rapid (minutes), spontaneous diffusion has heretofore not been tested. As shown herein, lysosomal membranes were unique among known organellar membranes in terms of cholesterol content, cholesterol dynamics, and response to cholesterol-mobilizing proteins. First, the lysosomal membrane cholesterol:phospholipid molar ratio, 0.38, was intermediate between those of the plasma membrane and other organellar membranes. Second, a fluorescence sterol exchange assay showed that the initial rate of spontaneous sterol transfer out of lysosomes and purified lysosomal membranes was extremely slow, t(1/2) >4 days. This was >100-fold longer than that reported in intact cells (2 min) and 40-60-fold longer than from any other known intracellular membrane. Third, when probed with several cholesterol-binding proteins, the initial rate of sterol transfer was maximally increased nearly 80-fold and the organization of cholesterol in the lysosomal membrane was rapidly altered. Nearly half of the essentially nonexchangeable sterol in the lysosomal membrane was converted to rapidly (t(1/2) = 6 min; fraction = 0.06) and slowly (t(1/2) = 154 min; fraction = 0.36) exchangeable sterol domains/pools. In summary, the data revealed that spontaneous cholesterol transfer out of the lysosome and lysosomal membrane was extremely slow, inconsistent with rapid spontaneous diffusion across the lysosomal membrane. In contrast, the very slow spontaneous transfer of sterol out of the lysosome and lysosomal membrane was consistent with cholesterol leaving the lysosome earlier in the endocytic process and/or with cholesterol transfer out of the lysosome being mediated by additional process(es) extrinsic to the lysosome and lysosomal membrane.  相似文献   

16.
Liposome plasmid DNA complexes (lipoplexes) are often inefficient in mediating gene transfer and expression because of DNA degradation in lysosomal vesicles. Because herpes simplex virus (HSV) enters cells by fusion of the virus envelope with the plasma membranes, thereby overriding the endosomal pathway, HSV/lipoplex mixtures could be useful for improving gene transfer particularly when the mixture uses highly defective HSV particles that fail to express cytotoxic viral gene products. To evaluate this possibility, lipoplexes composed of cationic liposomes and lacZ reporter plasmids were compared for their ability to transduce cells in culture in the presence and absence of infectious HSV particles. The results showed that HSV increased the efficiency of cell transduction by approximately 4-100-fold compared with lipoplex vector alone, depending on the cell type targeted for gene delivery. The increased efficiency of transduction was virus dose dependent and required virus entry.  相似文献   

17.
18.
Cationic liposomes can efficiently carry nucleic acids into mammalian cells. This property is tightly connected with their ability to fuse with negatively charged natural membranes (i.e. the plasma membrane and endosomal membrane). We used FRET to monitor and compare the efficiency of lipid mixing of two liposomal preparations — one of short-chained diC14-amidine and one of long-chained unsaturated DOTAP — with the plasma membrane of HeLa cells. The diC14-amidine liposomes displayed a much higher susceptibility to lipid mixing with the target membranes. They disrupted the membrane integrity of the HeLa cells, as detected using the propidium iodide permeabilization test. Morphological changes were transient and essentially did not affect the viability of the HeLa cells. The diC14-amidine liposomes were much more effective at either inducing lipid mixing or facilitating transfection.  相似文献   

19.
VPS13A is a lipid transfer protein localized at different membrane contact sites between organelles, and mutations in the corresponding gene produce a rare neurodegenerative disease called chorea-acanthocytosis (ChAc). Previous studies showed that VPS13A depletion in HeLa cells results in an accumulation of endosomal and lysosomal markers, suggesting a defect in lysosomal degradation capacity leading to partial autophagic dysfunction. Our goal was to determine whether compounds that modulate the endo-lysosomal pathway could be beneficial in the treatment of ChAc. To test this hypothesis, we first generated a KO model using CRISPR/Cas9 to study the consequences of the absence of VPS13A in HeLa cells. We found that inactivation of VPS13A impairs cell growth, which precludes the use of isolated clones due to the undesirable selection of edited clones with residual protein expression. Therefore, we optimized the use of pool cells obtained shortly after transfection with CRISPR/Cas9 components. These cells are a mixture of wild-type and edited cells that allow a comparative analysis of phenotypes and avoids the selection of clones with residual level of VPS13A expression after long-term growth. Consistent with previous observations by siRNA inactivation, VPS13A inactivation by CRISPR/Cas9 resulted in accumulation of the endo-lysosomal markers RAB7A and LAMP1. Notably, we observed that rapamycin partially suppressed the difference in lysosome accumulation between VPS13A KO and WT cells, suggesting that modulation of the autophagic and lysosomal pathway could be a therapeutic target in the treatment of ChAc.  相似文献   

20.
Unlike lysosomal soluble proteins, few lysosomal membrane proteins have been identified. Rat liver lysosomes were purified by centrifugation on a Nycodenz density gradient. The most hydrophobic proteins were extracted from the lysosome membrane preparation and were identified by MS. We focused our attention on a protein of approx. 40 kDa, p40, which contains seven to ten putative transmembrane domains and four lysosomal consensus sorting motifs in its sequence. Knowing that preparations of lysosomes obtained by centrifugation always contain contaminant membranes, we combined biochemical and morphological methods to analyse the subcellular localization of p40. The results of subcellular fractionation of mouse liver homogenates validate the lysosomal residence of p40. In particular, a density shift of lysosomes induced by Triton WR-1339 similarly affected the distributions of p40 and beta-galactosidase, a lysosomal marker protein. We confirmed by fluorescence microscopy on eukaryotic cells transfected with p40 or p40-GFP (green fluorescent protein) constructs that p40 is localized in lysosomes. A first molecular characterization of p40 in transfected Cos-7 cells revealed that it is an unglycosylated protein tightly associated with membranes. Taken together, our results strongly support the hypothesis that p40 is an authentic lysosomal membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号