首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequent occurrence of parallel phenotypic divergence in similar habitats is often evoked when emphasizing the role of ecology in adaptive radiation and speciation. However, because phenotypic plasticity can contribute to the observed pattern of divergence, confirmation of divergence at loci underlying phenotypic traits is important for confirming adaptive divergence. In the present study, we examine parallel morphological, neutral, and potentially adaptive genetic divergence of threespine stickleback inhabiting different habitats within a lake. Three genetic clusters best explained the neutral genetic structure within the lake; however, morphological differences were only weakly connected to genetic clusters and there was considerable phenotypic variation within clusters. Among the factors that could contribute to the observed pattern of morphological and genetic divergence are phenotypic plasticity, selective mortality of hybrids, and habitat choice based on morphology. Several loci are identified as outliers indicating divergent selection between the morphs and some parallels in morphological and adaptive genetic divergence are found in stickleback spawning at two lava sites. However, neutral genetic structure indicates considerable genetic connectivity among the two lava sites, and the parallels in morphology may therefore represent selective distribution of phenotypes rather than parallel divergence. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 803–813.  相似文献   

2.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

3.
Predators strongly influence species assemblages and shape morphological defenses of prey. Interestingly, adaptations that constitute effective defenses against one type of predator may render the prey susceptible to other types of predators. Hence, prey may evolve different strategies to escape predation, which may facilitate adaptive radiation of prey organisms. Larvae of different species in the dragonfly genus Leucorrhinia have various morphological defenses. We studied the distribution of these larvae in relation to the presence of predatory fish. In addition, we examined the variation in morphological defenses within species with respect to the occurrence of fish. We found that well-defended species, those with more and longer spines, were more closely associated with habitats inhabited by predatory fish and that species with weakly developed morphological defenses were more abundant in habitats without fish. The species predominantly connected to lakes with or without fish, respectively, were not restricted to a single clade in the phylogeny of the genus. Our data is suggestive of phenotypic plasticity in morphological defense in three of the studied species since these species showed longer spines in lakes with fish. We suggest that adaptive phenotypic plasticity may have broadened the range of habitats accessible to Leucorrhinia. It may have facilitated colonization of new habitats with different types of predators, and ultimately, speciation through adaptive radiation.  相似文献   

4.
? Premise of the study: The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make inferences about the roles of adaptively significant genetic variation, broadly adapted generalist genotypes, and facultative outcrossing in the recent range expansion of B. tectorum in this region. ? Methods: We sampled 20 individuals from each of 96 B. tectorum populations from historically and recently invaded habitats throughout the region and used four polymorphic SSR markers to characterize each individual. ? Key results: We detected 131 four-locus SSR genotypes; however, the 14 most common genotypes collectively accounted for 79.2% of the individuals. Common SSR genotypes were not randomly distributed among habitats. Instead, characteristic genotypes sorted into specific recently invaded habitats, including xeric warm and salt desert as well as mesic high-elevation habitats. Other SSR genotypes were common across a range of historically invaded habitats. We observed very few heterozygous individuals (0.58%). ? Conclusions: Broadly adapted, generalist genotypes appear to dominate historically invaded environments, while recently invaded salt and warm desert habitats are dominated by distinctive SSR genotypes that contain novel alleles. These specialist genotypes are not likely to have resulted from recombination; they probably represent more recent introductions from unknown source populations. We found little evidence that outcrossing plays a role in range expansion.  相似文献   

5.
Asexuality confers demographic advantages to invasive taxa, but generally limits adaptive potential for colonizing of new habitats. Therefore, pre-existing adaptations and habitat tolerance are essential in the success of asexual invaders. We investigated these key factors of invasiveness by assessing reproductive modes and host-plant adaptations in the pea aphid, Acyrthosiphon pisum, a pest recently introduced into Chile. The pea aphid encompasses lineages differing in their reproductive mode, ranging from obligatory cyclical parthenogenesis to fully asexual reproduction. This species also shows variation in host use, with distinct biotypes specialized on different species of legumes as well as more polyphagous populations. In central Chile, microsatellite genotyping of pea aphids sampled on five crops and wild legumes revealed three main clonal genotypes, which showed striking associations with particular host plants rather than sampling locations. Phenotypic analyses confirmed their strong host specialization and demonstrated parthenogenesis as their sole reproductive mode. The genetic relatedness of these clonal genotypes with corresponding host-specialized populations from the Old World indicated that each clone descended from a particular Eurasian biotype, which involved at least three successful introduction events followed by spread on different crops. This study illustrates that multiple introductions of highly specialized clones, rather than local evolution in resource use and/or selection of generalist genotypes, can explain the demographic success of a strictly asexual invader.  相似文献   

6.
Identifying ecological factors associated with local differentiation of populations is important for understanding microevolutionary processes. Alpine environments offer a unique opportunity to investigate the effects of habitat-specific selective forces and gene flow limitations among populations at a microscale on local adaptation because the heterogeneous snowmelt patterns in alpine ecosystems provide steep environmental changes. We investigated the variation in morphological traits and enzyme loci between fellfield and snowbed populations of Potentilla matsumurae, a common alpine herb with a wide distribution along snowmelt gradients in northern Japan. We found significant differences in morphological traits between fellfield and snowbed habitats in a northern distribution region. These differences were maintained when plants were grown under uniform conditions in a greenhouse. Allozyme variations among 15 populations from geographically separated regions with different historical backgrounds showed that the populations are more genetically differentiated between the fellfield and snowbed habitats within a region than between populations occupying the same habitat type in different regions. These results suggest that variation in snowmelt regimes could be a driving force creating local adaptation and genetic differentiation of alpine plant populations.  相似文献   

7.
Here we critically review the scale and extent of adaptive genetic variation in Atlantic salmon (Salmo salar L.), an important model system in evolutionary and conservation biology that provides fundamental insights into population persistence, adaptive response and the effects of anthropogenic change. We consider the process of adaptation as the end product of natural selection, one that can best be viewed as the degree of matching between phenotype and environment. We recognise three potential sources of adaptive variation: heritable variation in phenotypic traits related to fitness, variation at the molecular level in genes influenced by selection, and variation in the way genes interact with the environment to produce phenotypes of varying plasticity. Of all phenotypic traits examined, variation in body size (or in correlated characters such as growth rates, age of seaward migration or age at sexual maturity) generally shows the highest heritability, as well as a strong effect on fitness. Thus, body size in Atlantic salmon tends to be positively correlated with freshwater and marine survival, as well as with fecundity, egg size, reproductive success, and offspring survival. By contrast, the fitness implications of variation in behavioural traits such as aggression, sheltering behaviour, or timing of migration are largely unknown. The adaptive significance of molecular variation in salmonids is also scant and largely circumstantial, despite extensive molecular screening on these species. Adaptive variation can result in local adaptations (LA) when, among other necessary conditions, populations live in patchy environments, exchange few or no migrants, and are subjected to differential selective pressures. Evidence for LA in Atlantic salmon is indirect and comes mostly from ecological correlates in fitness-related traits, the failure of many translocations, the poor performance of domesticated stocks, results of a few common-garden experiments (where different populations were raised in a common environment in an attempt to dissociate heritable from environmentally induced phenotypic variation), and the pattern of inherited resistance to some parasites and diseases. Genotype x environment interactions occurr for many fitness traits, suggesting that LA might be important. However, the scale and extent of adaptive variation remains poorly understood and probably varies, depending on habitat heterogeneity, environmental stability and the relative roles of selection and drift. As maladaptation often results from phenotype-environment mismatch, we argue that acting as if populations are not locally adapted carries a much greater risk of mismanagement than acting under the assumption for local adaptations when there are none. As such, an evolutionary approach to salmon conservation is required, aimed at maintaining the conditions necessary for natural selection to operate most efficiently and unhindered. This may require minimising alterations to native genotypes and habitats to which populations have likely become adapted, but also allowing for population size to reach or extend beyond carrying capacity to encourage competition and other sources of natural mortality.  相似文献   

8.
The threespine stickleback (Gasterosteus aculeatus) has emerged as an important model organism in evolutionary ecology, largely due to the repeated, parallel evolution of divergent morphotypes found in populations having colonized freshwater habitats. However, morphological divergence following colonization is not a universal phenomenon. We explore this in a large-scale estuarine ecosystem inhabited by two parapatric stickleback demes, each physiologically adapted to divergent osmoregulatory environments (fresh vs. saline waters). Using geometric morphometric analyses of wild-caught individuals, we detected significant differences between demes, in addition to sexual dimorphism, in body shape. However, rearing full-sib families from each deme under controlled, reciprocal salinity conditions revealed no differences between genotypes and highly significant environmental effects. It is also noteworthy that fish from both demes were fully plated, whether found in the wild or reared under reciprocal salinity conditions. Although we found significant heritability for body shape, we also noted significant direct environmental effects for many latent shape variables. Moreover, we found little evidence for diversifying selection acting on body size and shape (Q(ST) ). Nevertheless, uniform compressive variation did exceed neutral expectations, yet despite evidence of both allometry and genetic correlation with body length, we detected no correlated signatures of selection. Taken together, these results suggest that much of the morphological divergence observed in this system is the result of plastic responses to environmental variation rather than adaptive differentiation.  相似文献   

9.
Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.  相似文献   

10.
It has sometimes been suggested that the term adaptation should be reserved for differences with a known genetic basis. We argue that adaptation should be defined by its effects rather than by its causes as any difference between two phenotypic traits (or trait complexes) which increases the inclusive fitness of its carrier. This definition implies that some adaptations may arise by means other than natural selection. It is particularly important to bear this in mind when behavioural traits are considered. Critics of the 'adaptationist programme' have suggested that an important objection to many adaptive explanations is that they rely on ad-hoc arguments concerning the function of previously observed differences. We suggest that this is a less important problem (because evolutionary explanations generally claim some sort of generality and are therefore testable) than the difficulties arising from confounding variables. These are more widespread and more subtle than is generally appreciated. Not all differences between organisms are directly adapted to ecological variation. The form of particular traits usually constrains the form of value that other traits can take, presenting several obstacles to attempts to relate variation in morphological or behavioural characteristics directly to environmental differences. We describe some of the repercussions of differences in body size among vertebrates and ways in which these can be allowed for. In addition, a variety of evolutionary processes can produce non-adaptive differences between organisms. One way of distinguishing between these and adaptations is to investigate adaptive trends in phylogenetically different groups of species.  相似文献   

11.
Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.  相似文献   

12.
Local adaptation patterns have been found in many plants and animals, highlighting the genetic heterogeneity of species along their range of distribution. In the next decades, global warming is predicted to induce a change in the selective pressures that drive this adaptive variation, forcing a reshuffling of the underlying adaptive allele distributions. For species with low dispersion capacity and long generation time such as trees, the rapidity of the change could impede the migration of beneficial alleles and lower their capacity to track the changing environment. Identifying the main selective pressures driving the adaptive genetic variation is thus necessary when investigating species capacity to respond to global warming. In this study, we investigate the adaptive landscape of Fagus sylvatica along a gradient of populations in the French Alps. Using a double‐digest restriction‐site‐associated DNA (ddRAD) sequencing approach, we identified 7,000 SNPs from 570 individuals across 36 different sites. A redundancy analysis (RDA)‐derived method allowed us to identify several SNPs that were strongly associated with climatic gradients; moreover, we defined the primary selective gradients along the natural populations of F. sylvatica in the Alps. Strong effects of elevation and humidity, which contrast north‐western and south‐eastern site, were found and were believed to be important drivers of genetic adaptation. Finally, simulations of future genetic landscapes that used these findings allowed identifying populations at risk for F. sylvatica in the Alps, which could be helpful for future management plans.  相似文献   

13.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

14.
Arctic and alpine habitats occur along complex environmental gradients, and over an extensive geographical range. Despite some selective forces common to these habitats, evolutionary divergence among populations of arctic and alpine plants along this gradient is expected. Of particular significance, both in the context of life-history theory and for implications of climate change, are the few annual species that have adapted to the constraints of an unpredictable, short growing season. In this study, morphological, life-history and phenological characters were found to differ significantly among six widely distributed populations of the arctic-alpine annual Koenigia islandica. On the basis of morphology and life-history traits, populations from high latitudes, with the exception of Svalbard, performed better in simulated arctic conditions, whereas the low latitude alpine plants from Colorado showed enhanced performance under simulated alpine conditions. On the basis of phenology, the six populations can be clearly grouped into arctic, high latitude alpine and alpine populations: arctic plants were found to develop and flower earliest; alpine plants latest. Because these results were obtained using seeds harvested from plants first grown through a complete generation in growth chambers, they indicate strong genetic differentiation. We discuss possible adaptive explanations for observed differences among the six geographically divergent populations.  相似文献   

15.
Native plant species are routinely planted or sown in ecological restoration projects, but successful establishment and survival depend on where and how seeds are collected. Research suggests that it is important to use locally adapted seeds. Local populations often show a home-site advantage and non-local genotypes may be maladapted to local environmental conditions. Furthermore, intraspecific hybridisation of local and non-local genotypes may have a negative impact on the genetic structure of local populations via mechanisms such as outbreeding depression. Many species show a strong small-scale genetic differentiation between different habitats so that matching habitats of the restoration and donor site can be more important than minimizing geographical separation. It is a challenge to identify appropriate seed sources because strong small-scale population differentiation makes it difficult to delineate geographically defined seed zones to which seed exchange should be limited. Moreover, it is important to consider the genetic diversity of introduced material because it may be crucial to avoid genetic bottlenecks, inbreeding depression and poor establishment of plant populations. Repeated propagation in stock, which is often required to obtain a sufficient amount of seeds, can further reduce genetic diversity and may select for particular genotypes. Negative impacts of improper seed choice for nursery planting stock may become detectable only after many years, especially in long-lived and slow growing plants. Although scientific information on many species remains limited, the increasing demand for translocation of seed means that mandatory regulations are necessary. Guidelines should prescribe a specification of seed provenance, a record of genetic diversity of wild collections and rules for subsequent processing such as direct transfer and propagation of stock or seed orchards. We use a literature review to evaluate current legislation and to develop recommendations for herbaceous and woody species.  相似文献   

16.
Low dispersal marine intertidal species facing strong divergent selective pressures associated with steep environmental gradients have a great potential to inform us about local adaptation and reproductive isolation. Among these, gastropods of the genus Littorina offer a unique system to study parallel phenotypic divergence resulting from adaptation to different habitats related with wave exposure. In this study, we focused on two Littorina fabalis ecotypes from Northern European shores and compared patterns of habitat‐related phenotypic and genetic divergence across three different geographic levels (local, regional and global). Geometric morphometric analyses revealed that individuals from habitats moderately exposed to waves usually present a larger shell size with a wider aperture than those from sheltered habitats. The phenotypic clustering of L. fabalis by habitat across most locations (mainly in terms of shell size) support an important role of ecology in morphological divergence. A genome scan based on amplified fragment length polymorphisms (AFLPs) revealed a heterogeneous pattern of differentiation across the genome between populations from the two different habitats, suggesting ecotype divergence in the presence of gene flow. The contrasting patterns of genetic structure between nonoutlier and outlier loci, and the decreased sharing of outlier loci with geographic distance among locations are compatible with parallel evolution of phenotypic divergence, with an important contribution of gene flow and/or ancestral variation. In the future, model‐based inference studies based on sequence data across the entire genome will help unravelling these evolutionary hypotheses, improving our knowledge about adaptation and its influence on diversification within the marine realm.  相似文献   

17.
P. D. Cluster  R. W. Allard 《Genetics》1995,139(2):941-954
DNA samples from 980 plants of Avena barbata from 48 ecologically diverse sites in California and Oregon were assayed to determine their genotype for two duplicated loci governing rDNA variants. More than 40 different rDNA genotypes were observed among which 5 made up 96% of our sample in environmentally homogeneous sites; predominant genotypes were less frequent and recombinant genotypes were more frequent in environmentally heterogeneous sites. The spatial distribution of each predominant rDNA genotype was nearly an exact overlay on both macro- and microgeographical scales of a distinctive habitat and also of the distribution of an eight-locus morphological-allozyme variant genotype. In all, seven different habitat-genotype combinations (ecotypes) were distinguishable on the basis of their morphological-allozyme-rDNA genotypes. None of these seven genotypes has been found in ancestral Spanish populations; thus the above predominant multilocus genotypes (ecotypes) of the colonial populations evidently evolved subsequent to the recent introduction (within 150-200 generations) of A. barbata to California. The precise associations of specific alleles and genotypes of the morphological allozyme and rDNA loci with different specifiable habitats leads us to the conclusion that natural selection favoring particular multilocus combinations of alleles in different habitats was the main guiding force in shaping the internal genetic structure of local populations as well as the overall adaptive landscape of A. barbata over California and Oregon.  相似文献   

18.
Without genetic variation, species cannot cope with changing environments, and evolution does not proceed. In endangered species, adaptive potential may be eroded by decreased population sizes and processes that further reduce gene flow such as philopatry and local adaptations. Here, we focused on the philopatric and endangered loggerhead sea turtle (Caretta caretta) nesting in Cape Verde as a model system to investigate the link between adaptive potential and philopatry. We produced a dataset of three complementary genomic regions to investigate female philopatric behaviour (mitochondrial DNA), male-mediated gene flow (microsatellites) and adaptive potential (major histocompatibility complex, MHC). Results revealed genetically distinct nesting colonies, indicating remarkably small-scale philopatric behaviour of females. Furthermore, these colonies also harboured local pools of MHC alleles, especially at the margins of the population''s distribution, which are therefore important reserves of additional diversity for the population. Meanwhile, directional male-mediated gene flow from the margins of distribution sustains the adaptive potential for the entire rookery. We therefore present the first evidence for a positive association between philopatry and locally adapted genomic regions. Contrary to expectation, we propose that philopatry conserves a high adaptive potential at the margins of a distribution, while asymmetric gene flow maintains genetic connectivity with the rest of the population.  相似文献   

19.
Phenotypic and genetic variation within and among eight populations of Arabis serrata are documented in this study. This species shows great morphological variation throughout its geographical distribution in Japan. Plants are located in habitats with different types of soils and degree of disturbance. Half-sibs progenies from eight populations were collected and cultivated in a garden experiment. Nine morphological traits representing size and shape of rosette leaves were recorded. Univariate analyses of measured traits showed that phenotypic means differed among populations for all characters. Leaves of plants from disturbed habitats had the longest petioles (lanceolate) and plants from limestone habitats showed the most roundness in leaf shape (ovate). The northernmost populations always revealed the smallest leaves. Multivariate principal component analyses also showed that leaf shape and size varied among populations. The first three principal components explained 98.5% of the variation. Coefficients of variation had a very wide range and differed from one population to another. Some traits (e.g. leaf width/leaf length ratio) were consistently less variable while others (e.g. leaf area and petiole length) were more plastic. All traits had significant genetic variance in all populations. Intra-class correlation coefficients differed for most of the traits and each population presented a different range of values. Most of the leaf traits were intercorrelated in all the populations studied, although some populations were integrated more tightly for some traits. Populations of A. serrata are differentiated in phenotypic means but they display a mosaic of traits with slight morphological differences in each locality (i.e. a quantitative genetic variation). Some traits can be correlated to the habitats that they occupy but for some of them it is difficult to assign an actual adaptive value.  相似文献   

20.
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel‐web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285–392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110‐kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders’ behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号