首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships within the grass family were studied using a newly obtained locus of the nuclear single copy gene topoisomerase 6 (Topo6) spanning the four exons 8–11 and the chloroplast matK gene. Data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All analyses showed genera Streptochaeta and Anomochloa as early diverging, followed by Pharus as sister to the rest of the Poaceae, and monophyly of the subfamily Anomochlooideae was supported by the nuclear dataset. The remaining grasses formed a strongly supported and monophyletic group, which split into the major clades BEP and PACMAD in the Topo6 analyses. Monophyly of the BEP clade was strongly supported by the Topo6 data. The results showed clearly incongruity between the two sets of data, such as the different subfamilial relationships of Bambusoideae, Ehrhartoideae and Pooideae. Most of the analysed species are representatives of subfamily Pooideae, which was analysed in more detail by PCR fragment length differences of another Topo6 region spanning the exons 17–19. Monophyly of Pooideae was strongly supported by the matK data, whereas the nuclear data placed Brachyelytrum outside of the remaining Pooideae. Relationships within the early evolutionary lineages remained largely unresolved in the phylogenetic trees, but the ‘core’ Pooideae (Aveneae/Poeae tribe complex and Hordeeae) were highly supported in all analyses. The differences in amplification lengths illustrate the tribe and subtribe classification of Pooideae. The comparatively conserved structure of the newly studied Topo6 region makes it a promising marker from the nuclear genome that could be successfully PCR-amplified to study higher-level phylogenetic relationships within grasses and perhaps between families within the order Poales.  相似文献   

2.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

3.
The matK gene: sequence variation and application in plant systematics   总被引:1,自引:0,他引:1  
Although the matK gene has been used in addressing systematic questions in four families, its potential application to plant systematics above the family level has not been investigated. This paper examines the rates, patterns, and types of nucleotide substitutions in the gene and addresses its utility in constructing phylogenies above the family level. Eleven complete sequences from the GenBank representing seed plants and liverworts and nine partial sequences generated for genera representing the monocot families Poaceae, Joinvilleaceae, Cyperaceae, and Smilacaceae were analyzed. The study underscored the high rate of substitution in the gene and the presence of mutationally conserved sectors. The use of different sectors of the gene and the cumulative inclusion of informative sites showed that the 3' region was most useful in resolving phylogeny, and that the topology and robustness of the tree reached a plateau after the inclusion of 100 informative sites from that region for the taxa used. The impact of using partial sequencing on sample size is addressed. The presence of a relatively conserved 3' region and the less conserved 5' region provides two sets of characters that can be used at different taxonomic levels from the tribal to the division levels.  相似文献   

4.
Based on recent molecular and morphological studies we present a modern worldwide phylogenetic classification of the ± 12074 grasses and place the 771 grass genera into 12 subfamilies (Anomochlooideae, Aristidoideae, Arundinoideae, Bambusoideae, Chloridoideae, Danthonioideae, Micraioideae, Oryzoideae, Panicoideae, Pharoideae, Puelioideae, and Pooideae), 6 supertribes (Andropogonodae, Arundinarodae, Bambusodae, Panicodae, Poodae, Triticodae), 51 tribes (Ampelodesmeae, Andropogoneae, Anomochloeae, Aristideae, Arundinarieae, Arundineae, Arundinelleae, Atractocarpeae, Bambuseae, Brachyelytreae, Brachypodieae, Bromeae, Brylkinieae, Centotheceae, Centropodieae, Chasmanthieae, Cynodonteae, Cyperochloeae, Danthonieae, Diarrheneae, Ehrharteae, Eragrostideae, Eriachneae, Guaduellieae, Gynerieae, Hubbardieae, Isachneae, Littledaleeae, Lygeeae, Meliceae, Micraireae, Molinieae, Nardeae, Olyreae, Oryzeae, Paniceae, Paspaleae, Phaenospermateae, Phareae, Phyllorachideae, Poeae, Steyermarkochloeae, Stipeae, Streptochaeteae, Streptogyneae, Thysanolaeneae, Triraphideae, Tristachyideae, Triticeae, Zeugiteae, and Zoysieae), and 80 subtribes (Aeluropodinae, Agrostidinae, Airinae, Ammochloinae, Andropogoninae, Anthephorinae, Anthistiriinae, Anthoxanthinae, Arthraxoninae, Arthropogoninae, Arthrostylidiinae, Arundinariinae, Aveninae, Bambusinae, Boivinellinae, Boutelouinae, Brizinae, Buergersiochloinae, Calothecinae, Cenchrinae, Chionachninae, Chusqueinae, Coicinae, Coleanthinae, Cotteinae, Cteniinae, Cynosurinae, Dactylidinae, Dichantheliinae, Dimeriinae, Duthieinae, Eleusininae, Eragrostidinae, Farragininae, Germainiinae, Gouiniinae, Guaduinae, Gymnopogoninae, Hickeliinae, Hilariinae, Holcinae, Hordeinae, Ischaeminae, Loliinae, Melinidinae, Melocanninae, Miliinae, Monanthochloinae, Muhlenbergiinae, Neurachninae, Olyrinae, Orcuttiinae, Oryzinae, Otachyriinae, Panicinae, Pappophorinae, Parapholiinae, Parianinae, Paspalinae, Perotidinae, Phalaridinae, Poinae, Racemobambosinae, Rottboelliinae, Saccharinae, Scleropogoninae, Scolochloinae, Sesleriinae, Sorghinae, Sporobolinae, Torreyochloinae, Traginae, Trichoneurinae, Triodiinae, Tripogoninae, Tripsacinae, Triticinae, Unioliinae, Zizaniinae, and Zoysiinae). In addition, we include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. We use the subfamilial name, Oryzoideae, over Ehrhartoideae because the latter was initially published as a misplaced rank, and we circumscribe Molinieae to include 13 Arundinoideae genera. The subtribe Calothecinae is newly described and the tribe Littledaleeae is new at that rank.  相似文献   

5.
matK gene, which is located in the chloroplast genome and evolves more quickly than the rbcL gene. A total of 31 species representing 31 of the 59 genera in the family were examined in this study. We also used 21 species from another ten families of Asparagales, four species from three families of Liliales and Acorus as outgroups. We obtained partial sequences of matK with lengths of 1,109–1,148 bp, corresponding to positions 230 to 1,343 of the Oryza sativa matK gene. The pairwise percentage sequence divergence ranged from 0 to 19.1% for all the species examined except Acorus, and 0 to 4.6% within Amaryllidaceae. Two methods of phylogenetic analysis, the Maximum Parsimony and Neighbor-Joining methods, were used. The trees obtained from these two analyses were fundamentally consistent. In both trees, the Amaryllidaceae sensu Dahlgren et al. formed a well-supported monophyletic clade with 100% bootstrap support. Amaryllidaceae were included in the Asparagales; however, its phylogenetic position within the Asparagales was not clearly resolved. Judging from the NJ tree, Agapanthus might be a sister group of the Amaryllidaceae, although bootstrap support for this was low. Character-state mapping was used to infer a center of origin and the biogeographic history of Amaryllidaceae. The result supports the hypothesis that the family evolved in Africa and subsequently spread to other continents, further suggesting that South America is the center of secondary diversification. Received 6 January 1999/ Accepted in revised form 8 April 1999  相似文献   

6.
基于matK基因对松属(Pinus L.)白皮松组(sect.Parrya Myre)进行了分子系统发育分析.白皮松组为一个并系类群,因为白松组的成员与该组(包括越南的扁叶松(P.krempfii Lecomte))的亚洲成员形成一个强烈支持的分支(靴带值92%).在这个分支中,白松组的3个代表种形成一个稳定的单系,而白皮松组的亚洲成员之间系统发育关系不明确.扁叶松和西藏白皮松(P. gerardiana Wall.ex D.Don)聚在一起,但只有61%的支持率.虽然在以前4个cpDNA基因序列分析时五针白皮松(P.squamata X.W.Li)与白皮松(P.bungeana Zucc.ex Loud.)和西藏白皮松形成一个单系,但在本文的分析中三者的关系不明确.在邻接树和多数一致简约树上,北美的白皮松组成员形成一个支持率低的分支.北美的subsect.Balfourianae Engelm.亚组(包括P.aristata Engelm.)是一个单系,但支持率较低.美洲另外两个亚组subsect.Cembroides Englem.和subsect.Rzedowskianae Carv.的组间和组内关系不确定,它们在严格一致简约树上形成一个多歧分支.  相似文献   

7.
Abstract We assess the phylogenetic information in trnK intron at the ordinal level using the Caryophyllales and compare it with that derived from matK. The trnK gene is split into two exons by an intron that includes the matK gene. The plastid trnK is a tRNA gene encoding Lysine(UUU), whereas the matK gene is a putative group II intron maturase. The two regions are usually coamplified, and trnK intron is partially sequenced but its sequences are often excluded from phylogenetic reconstruction at deep historic levels. This study shows that the two regions are comparable in proportion of variable sites, possess a comparable pattern of substitution rates per site, and display similar phylogenetic informativeness profiles and per‐site informativeness. Phylogenetic analyses show strong congruence between phylogenetic trees based on matK and trnK intron partitioned datasets from 45 genera representing 30 of the 34 recognized Caryophyllales families. The trnK intron alone provides a relatively well‐resolved topology for the order. Combining the trnK intron with matK sequence data resulted in six most parsimonious trees, differing only in the placement of Claytonia (Portulacaceae) within the noncore group. A well‐supported major basal split in the order into core and noncore Caryophyllales with Rhabdodendraceae, Simmondsiaceae, and Asteropeiaceae as sister to remaining core lineages is evident in partitioned and combined analyses. The placement of these three families has been disputable, impacting the overall backbone topology of the Caryophyllales. This study demonstrates the cost effectiveness of using the trnK intron along with matK (both substitutions and insertions/deletions) at deeper phylogenetic level.  相似文献   

8.
STACE, C. A. & JARVIS, C. E., 1985. TypiHcation of Linnaean taxa of annual Poaceae: Poeae related to Vulpia and Desmazeria. The status and typification of 15 Linnaean species of annual grasses related to Vulpia and Desmazeria are discussed. Of these 15, eight are represented by holotypes or lectotypes in LINN, two by lectotypes in Herb. A. van Royen (L), and one by a neotype in LINN. One (Festuca marina) is based on a pre-Linnaean polynomial and is represented by a lectotype in Herb. Sloane (BM); one (Cynosurus durus) has no known type specimens and we have chosen a Barrelier (1714) illustration as lectotype; one (Nardus aristatus) is an illegitimate name change for Nardus incurvus Gouan, for which we have selected a Scheuchzer (1719) illustration as lectotype; and finally Festuca incrassala appeared on a cancelled page of Species Plantarum and has no nomenclatural standing.  相似文献   

9.
The phylogeny of Pooideae, one of the largest subfamilies of grasses, has been intensively studied during the past years. To investigate the early evolutionary splits in Pooideae we used a broad sample of genera with uncertain placement, some of which have not been studied in molecular phylogenetics before, complemented by representatives from other lineages of this subfamily. Morphological, cytogenetic and biogeographical analyses were added to the molecular sequence work on chloroplast matK–3’trnK and nuclear ITS. According to chloroplast DNA data, a new and well-supported lineage was identified among the early branches. It consisted of Phaenosperma and a larger group of genera encompassing Anisopogon, Danthoniastrum, Duthiea, Metcalfia, Pseudodanthonia (inclusion resting on ITS and morphology), Sinochasea and Stephanachne. Based on structural characters we suggest to keep Phaenosperma under the monotypic tribe Phaenospermateae and to accommodate the other genera under a new tribe Duthieeae, which is morphologically well-defined by synapomorphic spikelet features. Megalachne and Podophorus were not part of the early diverging Pooideae lineages but belong to the Aveneae/Poeae complex. Morphological characteristics of Duthieeae are discussed with respect especially to Stipeae and reveal consistent differences between both tribes. The genera of Duthieeae and the major lineages of Stipeae are keyed. A cytogenetic survey of exemplary taxa corroborates high chromosome base numbers as prevailing within the early diverging lineages of Pooideae, but chromosome sizes are more highly varied than previously reported. Ecogeographical analyses point to warm and humid conditions as the ancestral bioclimatic niche of Phaenosperma and Duthieeae, whereas adaptation to cold and drought occurred only in a part of Duthieeae but was obviously less successful than in the widespread and much more species-rich tribe Stipeae. The distribution of Duthieeae with species-poor or monotypic genera in mountains of the northern hemisphere and Anisopogon as an outlier in Australia suggests relict character.  相似文献   

10.
Phylogenetic relationships in the tribe Millettieae and allies in the subfamily Papilionoideae (Leguminosae) were reconstructed from chloroplast trnK/matK sequences. Sixty-two accessions representing 57 traditionally recognized genera of Papilionoideae were sampled, including 27 samples from Millettieae. Phylogenies were constructed using maximum parsimony and are well resolved and supported by high bootstrap values. A well-supported "core Millettieae" clade is recognized, comprising the four large genera Millettia, Lonchocarpus, Derris, and Tephrosia. Several other small genera of Millettieae are not in the core Millettieae clade. Platycyamus is grouped with Phaseoleae (in part). Ostryocarpus, Austrosteenisia, and Dalbergiella are neither in the core Millettieae or Phaseoleae clade. These taxa, along with core Millettieae and Phaseoleae, form a monophyletic sister group to Indigofereae. Cyclolobium and Poecilanthe are close to Brongniartieae. Callerya and Wisteria belong to a large clade that includes all the legumes that lack the inverted repeat in their chloroplast genome, which confirms previous rbcL and phytochrome gene family phylogenies. The evolutionary history of four characters was examined in Millettieae and allies: the presence of canavanine, inflorescence types, the dehiscence of pods, and the presence of winged pods. trnK/matK sequence analysis suggests that the presence of a pseudoraceme or pseudopanicle and the accumulation of nonprotein amino acids are phylogenetically informative for Millettieae and allies with only a few exceptions.  相似文献   

11.
Phylogenetic relationships were inferred using nucleotide sequences of the chloroplast gene matK for members of Cornales, a well-supported monophyletic group comprising Cornaceae and close relatives. The shortest trees resulting from this analysis were highly concordant with those based on previous phylogenetic analysis of rbcL sequences. Analysis of a combined matK and rbcL sequence data set (a total of 2652 bp [base pairs]) provided greater resolution of relationships and higher internal support for clades compared to the individual data sets. Four major clades (most inclusive monophyletic groups) of Cornales are indicated by both sets of genes: (1) Cornus-Alangium, (2) nyssoids (Nyssa-Davidia-Camptotheca)- mastixioids (Mastixia, Diplopanax), (3) Curtisia, and (4) Hydrangeaceae-Loasaceae. The combined evidence indicates that clades 2 and 3 are sisters, with clade 4 sister to the remainder of Cornales. These relationships are also supported by other lines of evidence, including synapomorphies in fruit and pollen morphology and gynoecial vasculature. Comparisons of matK and rbcL sequences based on one of the most parsimonious rbcL-matK trees indicate that matK has a much higher A-T content (66.9% in matK vs. 55.8% in rbcL) and a lower transition:transversion ratio (1.23 in matK vs. 2.21 in rbcL). The total number of nucleotide substitutions per site for matK is 2.1 times that of rbcL in Cornales. These findings are similar to recent comparisons of matK and rbcL in other dicots. Variable sites of matK are almost evenly distributed among the three codon positions (1.0:1.0:1.3), whereas variable sites of rbcL are mostly at the third position (1.8:1.0 :7.5). Among- lineages rates of nucleotide substitutions in rbcL are basically homogeneous throughout Cornales, but are more heterogeneous in matK.  相似文献   

12.
The coding region of the matK gene was sequenced to infer the phylogeny of the family Magnoliaceae. Phylogenetic analyses of 21 matK sequences representing ten genera of Magnoliaceae and three outgroups suggest relationships among both subfamilies and genera. Monophyly of the subfamily Liriodendroideae (the genus Liriodendron) and the subfamily Magnolioideae is strongly supported, respectively. Within the subfamily Magnolioideae, three clades are formed: (1) the genus Magnlietia, (2) the subgenus Magnolia, and (3) the subgenus Yulania, with the genera Michelia, Paramichelia, Tsoongiodendron, Alcimandra, Kmeria, Parakmeria and Manglietiastrum. However, the genus Magnolia is shown to be a polyphyletic group, and the genus Michelia a paraphyletic group. Relatively low sequence divergences are detected among genera of the the subfamily Magnolioideae, ranging from 0.14% to 1.70%, especially in the tribe Micheliinae (0.14–0.98%). Molecular evidence from matK sequence data suggests that the phylogenetic positions and the delimitation of the eight genera Magnolia, Michelia, Tsoongiodendron, Paramichelia, Alcimandra, Kmeria, Parakmeria and Manglietiastrum need to be reconsidered. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

13.
基于matK基因的松属白皮松组分子系统发育分析(英文)   总被引:4,自引:0,他引:4  
基于matK基因对松属(Pinus L.)白皮松组(sect.Parrya Myre)进行了分子系统发育分析。白皮松组为一个并系类群,因为白松组的成员与该组(包括越南的扁叶松(P.krempfii Lecomte))的亚洲成员形成一个强烈支持的分支(靴带值92%)。在这个分支中,白松组的3个代表种形成一个稳定的单系,而白皮松组的亚洲成员之间系统发育关系不明确。扁叶松和西藏白皮松(P.gerardiana Wall.ex D.Don)聚在一起,但只有61%的支持率。虽然在以前4个cpDNA基因序列分析时五针白皮松(P.squamata X.W.Li)与白皮松(P.bungeana Zucc.ex Loud.)和西藏白皮松形成一个单系,但在本文的分析中三者的关系不明确。在邻接树和多数一致简约树上,北美的白皮松组成员形成一个支持率低的分支。北美的subsect.Balfourianae Engelm.亚组(包括P.aristata Engelm.)是一个单系,但支持率较低。美洲另外两个亚组subsect.Cembroides Englem.和subsect.Rzedowskianae Carv.的组间和组内关系不确定,它们在严格一致简约树上形成一个多歧分支。  相似文献   

14.
Attempts to design truly universal primers to amplify chloroplast microsatellites have met with limited success due to nonconservation of repeat loci across widely divergent taxa. We have used the complete chloroplast genome sequences of rice, maize and wheat to design five pairs of primers that amplify homologous mononucleotide repeats across the Poaceae (grasses). Sequencing confirmed conservation of repeat motifs across subfamilies and a preliminary study in Anthoxanthum odoratum revealed polymorphism at two loci with a haplotype diversity value of 0.495. These primers provide a valuable tool to study cytoplasmic diversity in this extensively studied and economically important range of taxa.  相似文献   

15.
为了充分认识海南地区现有禾本科植物的光合途径类型,为该地区禾本科植物的种质资源学、生理生态学研究提供可靠的资料,通过调查并收集整理海南禾本科牧草种质资源,以C3、C4植物在解剖结构上的差异为基础,利用石蜡制片技术鉴定海南禾本科植物光合途径的类型。结果表明,在224份研究材料中,有189种禾草属于C4光合类型,35种禾草属于C3光合类型,分别占禾草种数的84%和16%,说明该区域禾草以高光效的C4类型为主。  相似文献   

16.
稻族的系统发育及其研究进展   总被引:4,自引:0,他引:4  
稻族Oryzeae是禾本科Poaceae中包含多种经济植物的重要类群, 现有大约12个属, 广布全球的热带和温带地区。由于其重要的经济价值和在理论研究上的代表性, 稻属Oryza及其近缘属的研究受到了广泛关注。虽然形态学和初步的分子证据表明稻族是一个单系类群, 但稻族内各属的分类处理和属间系统发育关系以及稻族的起源、地理分布式样和机制等方面仍存在许多悬而未决的问题。本文简要回顾了稻族系统学研究的历史, 包括稻族的建立及其在禾本科中的系统位置、稻族的族下划分、稻族各属的界定及其系统发育关系。目前已有的研究结果表明: 稻族是单系类群, 可分为两个主要分支, 相当于传统的两个亚族(Zizaniinae和Oryzinae), 但稻族单性花小穗是多次起源的, 不宜作为划分亚族的依据; 一些单型属(Hydrochloa、Porteresia和Prosphytochloa)的建立得不到分子证据的支持; 根据分子钟原理估计稻族两个主要分支(亚族)的分歧时间在大约2000万年前, 而稻属和近缘属假稻属Leersia的分歧时间为1400万年; 稻属内主要类群的分歧时间在900万年前左右。此外, 本文还对稻族的生物地理学问题进行了初步探讨, 对稻族系统发育和进化研究中存在的问题及未来研究方向进行了讨论。  相似文献   

17.
We investigated phylogenetic and biogeographic relationships within Juglans (walnuts), a Tertiary disjunct genus, using 15 species of Juglans and related (Juglandaceae) outgroups. The relationships were analyzed using nucleotide sequences of the chloroplast gene matK and its flanking spacers and of the internal transcribed spacers (ITS) and 5.8S gene of the nuclear ribosomal DNA. The DNA sequences provided 246 informative characters for parsimony analysis. ITS data supported as monophyletic groups the four generic sections, Cardiocaryon, Dioscaryon, Rhysocaryon, and Trachycaryon. Within Rhysocaryon, the temperate black walnuts and the tropical black walnuts were supported as monophyletic groups. When the two data sets were combined, J. cinerea was nested within Cardiocaryon. Combined analysis with published nuclear DNA restriction site data placed J. cinerea in a monophyletic group with Cardiocaryon. These analyses consistently supported Juglans as a monophyletic group and as the sister group to the genus Pterocarya. The results of this work are consistent with the known geological history of Juglans. The fossil record suggests that the butternuts had evolved by the early Oligocene in North America. The presence of butternuts in Eurasia could be the result of migration from North America to Eurasia during the warming trend of the mid Oligocene.  相似文献   

18.
19.
Phylogenetic relationships of the Poaceae subfamily, Pooideae, were estimated from the sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The entire ITS region of 25 species belonging to 19 genera representing seven tribes was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The published sequence of rice, Oryza saliva, was used as the outgroup. Sequences of these taxa were analyzed with maximum parsimony (PAUP) and the neighbor-joining distance method (NJ). Among the tribes, the Stipeae, Meliceae and Brachypodieae, all with small chromosomes and a basic number more than x=7, diverged in succession. The Poeae, Aveneae, Bromeae and Triticeae, with large chromosomes and a basic number of x=7, form a monophyletic clade. The Poeae and Aveneae are the sister group of the Bromeae and Triticeae. On the ITS tree, the Brachypodieae is distantly related to the Triticeae and Bromeae, which differs from the phylogenies based on restriction-site variation of cpDNA and morphological characters. The phylogenetic relationships of the seven pooid tribes inferred from the ITS sequences are highly concordant with the cytogenetic evidence that the reduction in chromosome number and the increase in chromosome size evolved only once in the pooids and pre-dated the divergence of the Poeae, Aveneae, Bromeae and Triticeae.This paper reports factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitableThis paper is a cooperative investigation of USDA-ARS and the Utah Agricultural Experiment Station. Logan, Utah 84322. Journal Paper No. 4581  相似文献   

20.
Abstract: The presented mat K tree primarily agrees well with the previously presented rbc L tree and combined rbc L + atp B + 18SrDNA tree. According to the mat K tree, the monocotyledons are monophyletic with 100 % bootstrap support. Acorus diverges first from all other monocotyledons (90 % bootstrap support) in which two major clades are recognized: one (89 %) consisting of Alismatanae and Tofieldia (Nartheciaceae), and the other (< 50 %) comprising Lilianae, Commelinanae and Nartheciaceae other than Tofieldia. Within the latter major clade, Petrosavia and Japonolirion (Nartheciaceae) (82 %) diverge first from the remaining taxa (< 50 %) in which two clades are formed: one (81 %) consisting of Pandanales, Dioscoreales and Nartheciaceae-Narthecioideae, and the other (< 50 %) comprising Liliales, Asparagales and Commelinanae. In the former clade, Dioscoreales and Narthecioideae are grouped together (88 %). In the latter clade, Asparagales and Commelinanae are grouped together (< 50 %). Differences between the mat K and rbc L tree topologies appear in the positions of Tricyrtis (Calochortaceae) and Dracaenaceae. Differences between the mat K and combined rbc L + atp B + 18SrDNA tree topologies exist in the positions of the Petrosavia-Japonolirion pair (Nartheciaceae) and Pandanales. The stop codon position of the mat K gene appears to be highly variable among the monocotyledons, especially in the Liliales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号