首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although NAD(P)H oxidase-derived superoxide (O(2)(-)) is increased during the development of angiotensin II (ANG II)-dependent hypertension, vascular regulation at the protein level has not been reported. We have shown that four major components of NAD(P)H oxidase are located primarily in the vascular adventitia as a primary source of vascular O(2)(-). Here we compare vascular levels of O(2)(-) and NAD(P)H oxidase in normotensive and ANG II-infused hypertensive mice and show that, after 7 days of ANG II infusion (750 microg. kg(-1). day(-1) ip) in C57B1/6 mice, systolic blood pressure was increased compared with that after sham infusion, concomitant with increased O(2)(-) in the thoracic aorta as measured using lucigenin (25 microM)-enhanced chemiluminescence. Both p67(phox) and gp91(phox) were detectable by Western blotting in aortic homogenates, and we observed increased protein levels of NAD(P)H oxidase subunits. These ANG II-induced increases were normalized by simultaneous treatment with the AT(1) receptor antagonist losartan. Moreover, the primary location of these subunits was the adventitia as detected immunohistochemically. Our results suggest that ANG II-induced increases in O(2)(-) are due to increased adventitial NAD(P)H oxidase activity, brought about by the heightened expression and interaction of its components.  相似文献   

3.
4.
We previously reported that primary cultures of guinea pig gastric pit cells expressed all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phox) and could spontaneously release superoxide anion (O(2)(-)). We demonstrate here that pit cells express a nonphagocyte-specific gp91-phox homolog (Mox1) but not gp91-phox. Inclusion of catalase significantly inhibited [(3)H]thymidine uptake during the initial 2 days of culture. Pit cells, matured on day 2, slowly underwent spontaneous apoptosis. Scavenging O(2)(-) and related oxidants by superoxide dismutase plus catalase or N-acetyl cysteine (NAC) and inhibiting Mox1 oxidase by diphenylene iodonium activated caspase 3-like proteases and markedly enhanced chromatin condensation and DNA fragmentation. This accelerated apoptosis was completely blocked by a caspase inhibitor, z-Val-Ala-Asp-CH(2)F. Mox1-derived reactive oxygen intermediates constitutively activated nuclear factor-kappaB, and inhibition of this activity by nuclear factor-kappaB decoy oligodeoxynucleotide accelerated their spontaneous apoptosis. These results suggest that O(2)(-) produced by the pit cell Mox1 oxidase may play a crucial role in the regulation of their spontaneous apoptosis as well as cell proliferation.  相似文献   

5.
Because systems controlled by basal NAD(P)H oxidase activity appear to contribute to differences in responses of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to hypoxia, we characterized the Nox oxidases activities present in these vascular segments and how cytosolic NAD(P)H redox systems could be controlling oxidase activity. BPA generated approximately 60-80% more lucigenin (5 microM) chemiluminescence detectable superoxide than BCA. Apocynin (10 microM), a NAD(P)H oxidase inhibitor, and 6-aminonicotinamide (1 mM), a pentose phosphate inhibitor (PPP), both attenuated (approximately by 50-70%) superoxide detected in BPA and BCA. There was no significant difference in the expression of Nox2 or Nox4 mRNA or protein detected by Western blot analysis. NADPH and NADH increased superoxide in homogenates and isolated microsomal membrane fractions in a manner consistent with BPA and BCA having similar levels of oxidase activity. BPA had 4.2-fold higher levels of NADPH than BCA. The activity and protein levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting PPP enzyme generating cytosolic NADPH, were 1.5-fold higher in BPA than BCA. Thus BPA differ from BCA in that they have higher levels of G6PD activity, NADPH, and superoxide. Because both arteries have similar levels of Nox expression and activity, elevated levels of cytosolic NADPH may contribute to increased superoxide in BPA.  相似文献   

6.
Using spontaneously hypertensive and aortic banded rats, we have shown that expression of myocardial osteopontin, an extracellular matrix protein, coincides with the development of heart failure and is inhibited by captopril, suggesting a role for angiotensin II (ANG II). This study tested whether ANG II induces osteopontin expression in adult rat ventricular myocytes and cardiac microvascular endothelial cells (CMEC), and if so, whether induction is mediated via activation of mitogen-activated protein kinases (p42/44 MAPK) and involves reactive oxygen species (ROS). ANG II (1 microM, 16 h) increased osteopontin expression (fold increase 3.3+/-0.34, n = 12, P < 0.01) in CMEC as measured by northern analysis, but not in ARVM. ANG II stimulated osteopontin expression in CMEC in a time- (within 4 h) and concentration-dependent manner, which was prevented by the AT1 receptor antagonist, losartan. ANG II elicited robust phosphorylation of p42/44 MAPK as measured using phospho-specific antibodies, and increased superoxide production as measured by cytochrome c reduction and lucigenin chemiluminescence assays. These effects were blocked by diphenylene iodonium (DPI), an inhibitor of the flavoprotein component of NAD(P)H oxidase. PD98059, an inhibitor of p42/44 MAPK pathway, and DPI each inhibited ANG II-stimulated osteopontin expression. Northern blot analysis showed basal expression of p22phox, a critical component of NADH/NADPH oxidase system, which was increased 40-60% by exposure to ANG II. These results suggest that p42/44 MAPK is a critical component of the ROS-sensitive signaling pathways activated by ANG II in CMEC and plays a key role in the regulation of osteopontin gene expression. Published 2001 Wiley-Liss, Inc.  相似文献   

7.
Florian M  Freiman A  Magder S 《Steroids》2004,69(13-14):779-787
OBJECTIVE: Oxidant stress contributes to vascular injury and atherosclerosis. We hypothesized that estrogen treatment of ovariectomized rats decreases O(2)(-) by decreasing the activity of NAD(P)H oxidase and this reduction in O(2)(-) could have a vasculoprotective effect. METHODS AND RESULTS: Ovariectomized rats were treated with 17-beta-estradiol E2 (0.25mg) or oil placebo for 21 days. Aorta were removed for contractility studies and O(2)(-) production was measured by lucigenin enhanced chemiluminescence (230 and 5microM). E2 treatment decreased basal O(2)(-) production but did not alter NADH or NADPH stimulated O(2)(-) production. Total p47phox and p47phox in membrane fractions of cardiac tissue were decreased, which suggests less activation of NAD(P)H oxidase in E2 treated rats. E2 did not change expression of other components of NAD(P)H oxidase in heart, lung, spleen and diaphragm. Expression of eNOS was also lower in E2 treated rats. E2 did not affect the contractile response to phenylepherine, dilation with acetylcholine, dilation with superoxide dismutase or constriction with l-NAME. This argues against changes in bioavailable NO. CONCLUSIONS: E2 decreases activation of p47phox and O(2)(-) production by NAD(P)H oxidase. This did not affect contractile properties of the vessel, but could still potentially alter cell signaling from oxidant increasing stresses.  相似文献   

8.
In this study, we explored a novel function of polymorphonuclear neutrophils (PMN) NAD(P)H oxidase in the mechanism of tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. Studies were made in mice lacking the p47(phox) subunit of NAD(P)H oxidase as well as in cultured mouse lung vascular endothelial cells (MLVEC) from these mice. In response to TNFalpha challenge, NF-kappaB activation and ICAM-1 expression were significantly attenuated in lungs of p47(phox)(-/-) mice as compared with wild-type (WT) mice. The attenuated NF-kappaB activation in p47(phox)(-/-) mice was secondary to inhibition of NIK activity and subsequent IkappaBalpha degradation. Induction of neutropenia using anti-PMN serum prevented the initial TNFalpha-induced NF-kappaB activation and ICAM-1 expression in WT mice, indicating the involvement of PMN NAD(P)H oxidase in signaling these responses. Moreover, the responses were restored upon repletion with PMN obtained from WT mice but not with PMN from p47(phox)(-/-) mice. These findings were recapitulated in MLVEC co-cultured with PMN, suggesting that NF-kappaB activation and resultant ICAM-1 expression in endothelial cells occurred secondary to oxidants generated by the PMN NAD(P)H oxidase complex. The functional relevance of the PMN NAD(P)H oxidase in mediating TNFalpha-induced ICAM-1-dependent endothelial adhesivity was evident by markedly reduced adhesion of p47(phox)(-/-) PMN in co-culture experiments. Thus, oxidant signaling by the PMN NAD(P)H oxidase complex is an important determinant of TNFalpha-induced NF-kappaB activation and ICAM-1 expression in endothelial cells.  相似文献   

9.
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose‐stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free‐albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI—diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase‐I (CPT‐I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47PHOX translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up‐regulated the protein content of p47PHOX and the mRNA levels of p22PHOX, gp91PHOX, p47PHOX, proinsulin and the G protein‐coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110–1117, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Lee HS  Son SM  Kim YK  Hong KW  Kim CD 《Life sciences》2003,72(24):2719-2730
Reactive oxygen species (ROS) have been implicated in the pathogenesis of vascular dysfunction in diabetes mellitus, and NAD(P)H oxidase is known as the most important source of ROS in the vasculatures. To determine whether NAD(P)H oxidase is a major participant in the critical intermediary signaling events in high glucose (HG, 25 mM)-induced proliferation of vascular smooth muscle cells (VSMC), we investigated in explanted aortic VSMC from rats the role of NAD(P)H oxidase on the HG-related cellular proliferation and superoxide production. VSMC under HG condition had increased proliferative capacity that was inhibited by tiron (1 mM), a cell membrane permeable superoxide scavenger, but not by SOD, which is not permeable to cell membrane. The nitroblue tetrazolium staining in the HG-exposed VSMC was more prominent than that of VSMC under normal glucose (5.5 mM) condition, which was significantly inhibited by DPI (10 microM), an NAD(P)H oxidase inhibitor, but not by inhibitors for other oxidases such as NADH dehydrogenase, xanthine oxidase, and nitric oxide synthase. In the VSMC under HG condition, the enhanced NAD(P)H oxidase activity with increased membrane translocation of Rac1 was observed, but the protein expression of p22phox and gp91phox was not increased. These data suggest that HG-induced changes in VSMC proliferation are related to the intracellular production of superoxide through enhanced activity of NAD(P)H oxidase.  相似文献   

11.
NAD(P)H oxidase, the main source of reactive oxygen species in vascular cells, is known to be regulated by redox processes and thiols. However, the nature of thiol-dependent regulation has not been established. Protein disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase chaperone of the thioredoxin superfamily involved in protein processing and translocation. We postulated that PDI regulates NAD(P)H oxidase activity of rabbit aortic smooth muscle cells (VSMCs). Western blotting confirmed robust PDI expression and shift to membrane fraction after incubation with angiotensin II (AII, 100 nm, 6 h). In VSMC membrane fraction, PDI antagonism with bacitracin, scrambled RNase, or neutralizing antibody led to 26-83% inhibition (p < 0.05) of oxidase activity. AII incubation led to significant increase in oxidase activity, accompanied by a 6-fold increase in PDI refolding isomerase activity. AII-induced NAD(P)H oxidase activation was inhibited by 57-71% with antisense oligonucleotide against PDI (PDIasODN). Dihydroethidium fluorescence showed decreased superoxide generation due to PDIasODN. Confocal microscopy showed co-localization between PDI and the oxidase subunits p22(phox), Nox1, and Nox4. Co-immunoprecipitation assays supported spatial association between PDI and oxidase subunits p22(phox), Nox1, and Nox4 in VSMCs. Moreover, in HEK293 cells transfected with green fluorescent protein constructs for Nox1, Nox2, and Nox4, each of these subunits co-immunoprecipitated with PDI. Akt phosphorylation, a known downstream pathway of AII-driven oxidase activation, was significantly reduced by PDIasODN. These results suggest that PDI closely associates with NAD(P)H oxidase and acts as a novel redox-sensitive regulatory protein of such enzyme complex, potentially affecting subunit traffic/assembling.  相似文献   

12.
Studies have shown that the superoxide mechanism is involved in angiotensin II (ANG II) signaling in the central nervous system. We hypothesized that ANG II activates sympathetic outflow by stimulation of superoxide anion in the paraventricular nucleus (PVN) of streptozotocin (STZ)-induced diabetic rats. In α-chloralose- and urethane-anesthetized rats, microinjection of ANG II into the PVN (50, 100, and 200 pmol) produced dose-dependent increases in renal sympathetic nerve activity (RSNA), arterial pressure (AP), and heart rate (HR) in control and STZ-induced diabetic rats. There was a potentiation of the increase in RSNA (35.0 ± 5.0 vs. 23.0 ± 4.3%, P < 0.05), AP, and HR due to ANG II type I (AT(1)) receptor activation in diabetic rats compared with control rats. Blocking endogenous AT(1) receptors within the PVN with AT(1) receptor antagonist losartan produced significantly greater decreases in RSNA, AP, and HR in diabetic rats compared with control rats. Concomitantly, there were significant increases in mRNA and protein expression of AT(1) receptor with increased superoxide levels and expression of NAD(P)H oxidase subunits p22(phox), p47(phox), and p67(phox) in the PVN of rats with diabetes. Pretreatment with losartan (10 mg·kg(-1)·day(-1) in drinking water for 3 wk) significantly reduced protein expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) in the PVN of diabetic rats. Pretreatment with adenoviral vector-mediated overexpression of human cytoplasmic superoxide dismutase (AdCuZnSOD) within the PVN attenuated the increased central responses to ANG II in diabetes (RSNA: 20.4 ± 0.7 vs. 27.7 ± 2.1%, n = 6, P < 0.05). These data support the concept that superoxide anion contributes to an enhanced ANG II-mediated signaling in the PVN involved with the exaggerated sympathoexcitation in diabetes.  相似文献   

13.
Recently, we showed that cultured guinea pig gastric pit cells possess a phagocyte NADPH oxidase-like activity, which was up-regulated by Helicobacter pylori lipopolysaccharide. We demonstrate here that these cells express all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phoxes). Treatment with lipopolysaccharide increased the expression of gp91-, p22-, and p67-phoxes, but not that of p47- and p40-phoxes. Intriguingly, the p67-phox expression consistently correlated with up-regulation of superoxide anion-producing ability. Thus, the gastric pit cell NADPH oxidase may play an important role in regulation of the inflammatory response associated with H. pylori infection.  相似文献   

14.
In this study we analyzed the role of vascular NAD(P)H oxidase in the generation of O(2)(-) and the endothelial impairment of NO signal transduction pathway in hypertension. In aortic rings of 15-month-old stroke-prone spontaneously hypertensive rats (SHR15) we found a 10-fold increased expression of NAD(P)H oxidase subunit gp91phox mRNA associated with a 3-fold increased production of O(2)(-) compared to age-matched Wistar rats (WIS15). Vasorelaxation studies in aortas of SHR15 showed a strongly diminished response to acetylcholine, NO-donor S-nitroso-N-acetyl-d,l-penicillamine, and organic nitrate glyceryl trinitrate compared to WIS15. Soluble guanylate cyclase (sGC) activity and sGC beta(1)-subunit protein expression was downregulated in aortas and lungs of SHR15. These data suggest an upregulation of vascular NAD(P)H oxidase and an impairment of the NO signal transduction pathway in hypertension.  相似文献   

15.
Heme-oxygenase-1 (HO-1), the rate-limiting enzyme of heme degradation, has powerful anti-oxidant properties related to the production of the reactive oxygen species scavenger bilirubin. However, some data suggest that HO-1 could also inhibit the cellular production of reactive oxygen species. Therefore, we investigated whether the anti-oxidant properties of HO-1 could be mediated by modulation of the activity and/or expression of the heme-containing NAD(P)H oxidase, the main source of the superoxide anion (O(2)(-)) in phagocytic cells. Increasing HO-1 expression in RAW 264.7 macrophages effectively decreased NAD(P)H oxidase activity and expression of gp91(phox), its heme-containing catalytic component, because of deficient protein maturation and increased degradation. Loading cells with heme reversed the decrease in O(2)(-) production and gp91(phox) expression induced by HO-1 overexpression. Similar results were obtained in vivo in rat alveolar macrophages after pharmacological modulation of HO-1 expression or activity. These results show that a decrease in heme content due to HO-1 activation limits heme availability for maturation of the gp91(phox) subunit and assembly of the functional NAD(P)H oxidase. This study provides a new mechanism to explain HO-1 anti-oxidant properties.  相似文献   

16.
Reduced levels of cGMP-dependent protein kinase I (PKG-I) in vasculature have been shown to contribute to diabetic vascular dysfunctions. However, the underlying mechanisms remain unknown. In this report, using primary rat aortic smooth muscle cells (VSMC), we investigated the mechanisms of glucose-mediated regulation of PKG-I expression. Our data showed that high glucose (30 mM glucose) exposure significantly reduced PKG-I production (protein and mRNA levels) as well as PKG-I activity in cultured VSMC. Glucose-mediated decreases in PKG-I levels were inhibited by a superoxide scavenger (tempol) or NAD(P)H oxidase inhibitors (diphenylene iodonium or apocynin). High glucose exposure time-dependently increased superoxide production in VSMC, which was abolished by tempol or apocynin treatment, but not by other inhibitors of superoxide-producing enzymes (L-NAME, rotenone, or oxypurinol). Total protein levels and phosphorylated levels of p47phox (an NADPH oxidase subunit) were increased in VSMC after high glucose exposure. Transfection of cells with siRNA-p47phox abolished glucose-induced superoxide production and restored PKG-I protein levels in VSMC. Treatment of cells with PKC inhibitor prevented glucose-induced p47phox expression/phosphorylation and superoxide production and restored the PKG-I levels. Decreased PKG-I protein levels were also found in femoral arteries from diabetic mice, which were associated with the decreased DEA-NONOate-induced vasorelaxation. Taken together, the present results suggest that glucose-mediated down-regulation of PKG-I expression in VSMC occurs through PKC-dependent activation of NAD(P)H oxidase-derived superoxide production, contributing to diabetes-associated vessel dysfunctions.  相似文献   

17.
Yun MR  Kim JJ  Im DS  Yang SD  Kim CD 《Life sciences》2004,75(20):2463-2472
The increased levels of cell adhesion molecules (CAM) have been identified in diabetic vasculatures, but the underlying mechanisms remain unclear. To determine the relationship among vascular production of superoxide, expression of CAM and diabetes, superoxide generation and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E- and P-selectin in the aorta from control (C57BL/6J) and diabetic mice (ob/ob) were measured. In situ staining for superoxide using dihydroethidium showed an increased superoxide production in diabetic aorta in association with an enhanced NAD(P)H oxidase activity. Immunohistochemical analysis revealed that the endothelial expression of ICAM-1 (3.5 +/- 0.4) and VCAM-1 (3.8 +/- 0.3) in diabetic aorta was significantly higher than that in control aorta (0.9 +/- 0.5 and 1.6 +/- 0.3, respectively). Furthermore, there was a strong positive correlation (r = 0.89, p < 0.01 in ICAM-1 and r = 0.88, p < 0.01 in VCAM-1) between ICAM-1/VCAM-1 expression and vascular production of superoxide. The present data indicate that the increased production of superoxide via NAD(P)H oxidase may explain the enhanced expression of CAM in diabetic vasculatures.  相似文献   

18.
Vascular injury after balloon angioplasty results in the rapid activation of platelets leading to the release of growth factors and vasoactive substances. In addition, up-regulation of tissue factor (TF) and an increased production of reactive oxygen species (ROS) have been detected at sites of vascular injury. We investigated whether platelet-derived products (PDP) released from activated human platelets increase ROS production, resulting in the induction of TF expression in vascular smooth muscle cells (SMC). PDP induced a time- and concentration-dependent increase in ROS generation in cultured SMC that was mediated mainly by PDGF-AB and TGF-beta1 and impaired by the flavin inhibitor diphenylene iodonium. Increased ROS formation was associated with enhanced mRNA levels of the small NAD(P)H oxidase subunit p22phox or its smooth muscle isoform. Transient transfection with a p22phox antisense vector decreased PDP-induced ROS generation. PDP up-regulated TF mRNA expression, which was redox sensitive and reduced by transfection of the p22phox antisense vector. In addition, PDP-stimulated reporter gene activity of two TF promoter constructs was decreased by coexpression of the p22phox antisense vector. These results indicate that activated platelets up-regulate TF expression and that this response involves ROS generation and a p22phox-containing NAD(P)H oxidase in SMC.  相似文献   

19.
The phagocyte NADPH oxidase is a multicomponent membrane-bound electron transport chain that catalyzes the reduction of O2 to superoxide. Cytochrome b558, the terminal electron donor to O2, is an integral membrane heterodimer containing 91- and 22-kDa subunits (gp91-phox and p22-phox, respectively). Synthetic peptides, whose amino acid sequences correspond to a gp91-phox carboxyl-terminal domain, inhibit superoxide production by blocking assembly of the oxidase from membrane and cytosol components. In this study, we examined the amino acid sequence requirements of a series of synthetic truncated gp91-phox peptides for inhibition of human neutrophil NADPH oxidase activation. RGVHFIF, corresponding to gp91-phox residues 559-565, was the minimum sequence capable of inhibiting superoxide generation. Contributions of individual amino acids to overall RGVHFIF inhibitory activity were determined by comparing the abilities of alanine-substituted RGVHFIF peptides to inhibit superoxide production. Substitution of alanine for arginine, valine, isoleucine, or either of the phenylalanines (but not glycine or histidine) within RGVHFIF resulted in loss of inhibitory activity. Synthetic gp91-phox carboxyl-terminal peptides are likely to be competitive inhibitors of the corresponding carboxyl-terminal domain of native gp91-phox by virtue of amino acid identity. We conclude that properties of arginine valine, isoleucine, and phenylalanine side chains within an RGVHFIF-containing domain of gp91-phox contribute significantly to cytochrome b558-mediated activation of the oxidase.  相似文献   

20.
The CYBA gene variants have been inconsistently associated with coronary heart disease (CHD) risk. A case-control study was conducted genotyping 619 subjects to explore the contribution of C242T and A640G to CHD risk in the population. A significant risk was found associated with GG homozygosity (odds ratio (OR) 2.132, 95% confidence interval, 1.113-4.085). The C242T variant was associated with CHD risk in women. Bias due to population stratification was analysed. Phenotype changes linked to these polymorphisms were evaluated. Superoxide measurements revealed higher production as indicated by the presence of the G and T alleles. Differences in mRNA concentration in heterozygous A640G samples were analysed. Higher levels of G allele mRNA compared with A allele mRNA were found. NAD(P)H oxidase p22phox sub-unit expression was evaluated with Western blot. Experiments revealed a gradual relationship in p22phox protein expression according to genotypes of the analysed variants. Those GG TT double homozygous showed increased p22phox protein expressions regarding AA CC double homozygous. This study has demonstrated increased expression and activity of the NAD(P)H system components during atherogenesis and the results could help explain the relevance of the A640G variant as a CHD marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号