首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
G A Howe  J Lightner  J Browse    C A Ryan 《The Plant cell》1996,8(11):2067-2077
The activation of defense genes in tomato plants has been shown to be mediated by an octadecanoic acid-based signaling pathway in response to herbivore attack or other mechanical wounding. We report here that a tomato mutant (JL5) deficient in the activation of would-inducible defense genes is also compromised in resistance toward the lepidopteran predator Manduca sexta (tobacco hornworm). Thus we propose the name defenseless1 (def1) for the mutation in the JL5 line that mediates this altered defense response. In experiments designed to define the normal function of DEF1, we found that def1 plants are defective in defense gene signaling initiated by prosystemin overexpression in transgenic plants as well as by oligosaccharide (chitosan and polygalacturonide) and polypeptide (systemin) elicitors. Supplementation of plants through their cut stems with intermediates of the octadecanoid pathway indicates that def1 plants are affected in octadecanoid metabolism between the synthesis of hydroperoxylinolenic acid and 12-oxo-phytodienoic acid. Consistent with this defect, def1 plants are also compromised in their ability to accumulate jasmonic acid, the end product of the pathway, in response to wounding and the aforementioned elicitors. Taken together, these results show that octadecanoid metabolism plays an essential role in the transduction of upstream would signals to the activation of antiherbivore plant defenses.  相似文献   

4.
5.
6.
G A Howe  C A Ryan 《Genetics》1999,153(3):1411-1421
In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2).  相似文献   

7.
8.
Hydroxyproline-rich glycopeptides (HypSys peptides) have been isolated recently from tobacco and tomato leaves that are powerful activators of protease inhibitor synthesis. The peptides are processed from polyprotein precursors, two from a single tobacco precursor and three from a single tomato precursor. The precursor genes are expressed in response to wounding and methyl jasmonate, similar to the expression of the systemin precursor prosystemin in tomato leaves. Here we investigate the relationships between systemin and the tomato HypSys peptides in regulating wound signaling in tomato plants. Analysis of transgenic tomato plants over-expressing sense and antisense constructs of the tomato HypSys precursor under the 35S CaMV promoter show that the transgenic plants regulate protease inhibitor gene expression in response to wounding in a manner similar to prosystemin. The evidence indicates that the expression of both the tomato HypSys precursor gene and the prosystemin gene in response to wounding are necessary for strong systemic signaling. The data supports a role for both genes in an amplification loop that up-regulates the octadecanoid pathway and the synthesis of jasmonates to effect strong systemic signaling of defense genes. This report provides the first demonstration of the involvement of two plant peptides derived from two unrelated genes in regulating long distance wound signaling in plants. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors () is Clarence A. Ryan.  相似文献   

9.
Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form beta-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.  相似文献   

10.
宋恒  王长泉 《植物学报》2013,48(4):461-469
茉莉酸是植物伤反应的特异激素, 在植物伤反应中具有核心作用, 其下游调控机制已经比较清晰。在番茄(Lycopersicon esculentum)伤反应中, 系统素和茉莉酸协同启动相关基因的表达, 行使系统性防御功能。拟南芥(Arabidopsis thaliana)信号肽是新发现的一类信号物质, 可以激活植物的初始免疫反应, 但其在伤反应中的作用机制有待进一步研究。脱落酸位于茉莉酸上游, 单独或者协同茉莉酸参与植物的防御反应。另外, 植物中还存在以核糖核酸酶为代表的且不依赖于茉莉酸的伤反应信号转导途径。该文对植物伤反应的防御机制和信号转导做了详细概述。  相似文献   

11.
NPR1 (a non‐expressor of pathogenesis‐related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore‐induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as‐npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI‐LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as‐npr1 plants increased the levels of herbivore‐induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore‐induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.  相似文献   

12.
Wound- and systemin-inducible calmodulin gene expression in tomato leaves   总被引:10,自引:0,他引:10  
Using a calmodulin (CaM) cDNA as a probe in northern analyses, transgenic tomato plants that overexpress the prosystemin gene were found to express increased levels of CaM mRNA and protein in leaves compared to wild-type plants. These transgenic plants have been reported previously to express several wound-inducible defense-related genes in the absence of wounding. Calmodulin mRNA and protein levels were found to increase in leaves of young wild-type tomato plants after wounding, or treatment with systemin, methyl jasmonate, or linolenic acid. CaM mRNA appeared within 0.5 h after wounding or supplying young tomato plants with systemin, and peaked at 1 h. The timing of CaM gene expression is similar to the expression of the wound- or systemin-induced lipoxygenase and prosystemin genes, signal pathway genes whose expression have been reported to begin at 0.5–1 h after wounding and 1–2 h earlier than the genes coding for defensive proteinase inhibitor genes. The similarities in timing between the synthesis of CaM mRNA and the mRNAs for signal pathway components suggests that CaM gene expression may be associated with the signaling cascade that activates defensive genes in response to wounding.  相似文献   

13.
Wound-induced systemic expression of defensive proteinase inhibitor (PI) genes in tomato plants requires the action of systemin and its precursor protein prosystemin. Although it is well established that systemin induces PI expression through the octadecanoid pathway for jasmonic acid (JA) biosynthesis, relatively little is known about how systemin and JA interact to promote long-distance signaling between damaged and undamaged leaves. Here, this question was addressed by characterizing a systemin-insensitive mutant (spr1) that was previously identified as a suppressor of prosystemin-mediated responses. In contrast to JA biosynthetic or JA signaling mutants that lack both local and systemic PI expression in response to wounding, spr1 plants were deficient mainly in the systemic response. Consistent with this phenotype, spr1 plants exhibited normal PI induction in response to oligosaccharide signals that are thought to play a role in the local wound response. Moreover, spr1 abolished JA accumulation in response to exogenous systemin, and reduced JA accumulation in wounded leaves to approximately 57% of wild-type (WT) levels. Analysis of reciprocal grafts between spr1 and WT plants showed that spr1 impedes systemic PI expression by blocking the production of the long-distance wound signal in damaged leaves, rather than inhibiting the recognition of that signal in systemic undamaged leaves. These experiments suggest that Spr1 is involved in a signaling step that couples systemin perception to activation of the octadecanoid pathway, and that systemin acts at or near the site of wounding (i.e. in rootstock tissues) to increase JA synthesis to a level that is required for the systemic response. It was also demonstrated that spr1 plants are not affected in the local or systemic expression of a subset of rapidly induced wound-response genes, indicating the existence of a systemin-independent pathway for wound signaling.  相似文献   

14.
15.
The systemic accumulation of both hydrogen peroxide (H(2)O(2)) and proteinase inhibitor proteins in tomato leaves in response to wounding was inhibited by the NADPH oxidase inhibitors diphenylene iodonium (DPI), imidazole, and pyridine. The expression of several defense genes in response to wounding, systemin, oligosaccharides, and methyl jasmonate also was inhibited by DPI. These genes, including those of four proteinase inhibitors and polyphenol oxidase, are expressed within 4 to 12 hr after wounding. However, DPI did not inhibit the wound-inducible expression of genes encoding prosystemin, lipoxygenase, and allene oxide synthase, which are associated with the octadecanoid signaling pathway and are expressed 0.5 to 2 hr after wounding. Accordingly, treatment of plants with the H(2)O(2)-generating enzyme glucose oxidase plus glucose resulted in the induction of only the later-expressed defensive genes and not the early-expressed signaling-related genes. H(2)O(2) was cytochemically detected in the cell walls of vascular parenchyma cells and spongy mesophyll cells within 4 hr after wounding of wild-type tomato leaves, but not earlier. The cumulative results suggest that active oxygen species are generated near cell walls of vascular bundle cells by oligogalacturonide fragments produced by wound-inducible polygalacturonase and that the resulting H(2)O(2) acts as a second messenger for the activation of defense genes in mesophyll cells. These data provide a rationale for the sequential, coordinated, and functional roles of systemin, jasmonic acid, oligogalacturonides, and H(2)O(2) signals for systemic signaling in tomato plants in response to wounding.  相似文献   

16.
This study presents a kinetic analysis of the response to wounding in rice plants. In particular, jasmonic acid, salicylic acid, and lipoxygenase activity were measured in leaves of wounded rice plants during the early tillering phase. The results show that endogenous jasmonic acid transiently increases to a maximum 30 min after wounding (jasmonic acid burst) and lipoxygenase activity increases after the jasmonic acid burst, but not after the second smaller peak of endogenous jasmonic acid 23 h after wounding. In contrast, endogenous salicylic acid decreases during the jasmonic acid burst, such that the kinetic profiles of jasmonic acid and salicylic acid are inversely correlated during the early response to wounding. It is proposed here that the increase in endogenous jasmonic acid and the decrease in endogenous salicylic acid may contribute for establishing the efficient negative cross-talk between jasmonic acid and salicylic acid signaling pathways during the early response to wounding in rice.  相似文献   

17.
Jasmonates are signaling molecules that play key roles in wound response and regulate the biosynthesis of many defensive proteins, including proteases. In this study, we investigate the effects of wounding and methyl jasmonate (MJ) application on the protein expression pattern of Ricinus communis L. leaves and on proteolytic activity. Gelatin zymography demonstrated that both MJ and mechanical wounding induce alterations in the proteolytic pattern of castor bean leaves (R. communis L.). Expression of two cysteine proteases (38 and 29 kDa) was induced by the treatments employed; however, MJ induced a higher protease level than mechanical wounding during the stress period (24, 48, and 72 h). The increase in protease activity mirrors the decline in soluble protein content and rubisco degradation that may indicate initiation of senescence in castor plants. The 29 kDa protease has an acidic optimal pH; whereas the 38 kDa protease has a neutral optimum activity. Both proteases were almost completely inhibited by E-64 and cystatin. The significant induction of these proteins by MJ suggests a possible role of cysteine proteases in leaf senescence as well as their involvement in regulating both the wound response and MJ in castor bean plants.  相似文献   

18.
Systemic responses to environmental stimuli are essential for the survival of multicellular organisms. In plants, they are initiated in response to many different signals including pathogens, wounding, and abiotic stresses. Recent studies highlighted the importance of systemic acquired acclimation to abiotic stresses in plants and identified several different signals involved in this response. These included reactive oxygen species (ROS) and calcium waves, hydraulic waves, electric signals, and abscisic acid (ABA). Here, we address the interactions between ROS and ABA at the local and systemic tissues of plants subjected to abiotic stress and attempt to propose a model for the involvement of ROS, ABA, and stomata in systemic signaling leading to systemic acquired acclimation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号