首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucosamine Resistance in Yeast. I. a Preliminary Genetic Analysis   总被引:1,自引:0,他引:1       下载免费PDF全文
Mutants of the yeast Saccaromyces cerevisiae which can grow on glycerol medium in the presence of 0.05% D (+) glucosamine have been isolated. Genetic analysis of 13 of these glucosamine resistant (GR) mutants demonstrated two modes of inheritance. One group of mutants (GR 5, 6, 7, 8, 9 and 10) gave results characteristic of non-Mendelian inheritance and it is suggested that these mutants represent one or more new mitochondial loci. Four of the remaining mutants showed clear-cut Mendelian inheritance. These mutants fell into two complementation groups and subsequent mapping experiments demonstrated that two independent loci, gay 1 and gay 2, unlinked to each other or to the centromeres of chromosomes I, II, IV, VIII or IX, were responsible for conferring glucosamine resistance in these mutants.  相似文献   

2.
Hyperglycemia induced increased posttranslational modification of proteins by O-linked-β-N-acetyl glucosamine (O-GlcNAcylation) and mitochondrial dysfunction has been independently implicated in the development of insulin resistance. It is not known whether repertoire of O-GlcNAcylated proteins includes mitochondrial proteins and their altered O-GlcNAcylation impinges on their phosphorylation mediated normal functioning thus contribute to mitochondrial dysfunction and insulin resistance. We have explored the O-GlcNAcylation of mitochondrial proteins from myoblast cells under basal (4 mM) and high glucose (30 mM) conditions using a combination of proteomic approaches. Furthermore, we have assessed the accompanied changes in the phosphorylation of mitochondrial proteins. We report that a number of mitochondrial proteins are O-GlcNAcylated under basal condition which is altered under high glucose condition. In addition, we report that exposure to high glucose not only changes the O-GlcNAcylation of mitochondrial proteins but also changes their phosphorylation profiles. The dynamic and complex interplay between O-GlcNAcylation and phosphorylation of mitochondrial proteins was further validated by immunoblot analysis of HSP60, prohibitin, and voltage-dependent anion channel 1 as candidate proteins. O-GlcNAcylation of mitochondrial proteins may play a role in normal functioning of mitochondria. High glucose induced changes in O-GlcNAcylation and phosphorylation of mitochondrial proteins may be associated with mitochondrial dysfunction and insulin resistance.  相似文献   

3.
Glucosamine and glucosamine sulphate have been promoted as a disease-modifying agent to improve the clinical symptoms of osteoarthritis. The precise mechanism of the action of the suggested positive effect of glucosamine or glucosamine sulphate on cartilage proteoglycans is not known, since the level of glucosamine in plasma remains very low after oral administration of glucosamine sulphate. We examined whether exogenous hexosamines or their sulphated forms would increase steady-state levels of aggrecan and hyaluronan synthase (HAS) or glycosaminoglycan synthesis using Northern blot and 35S-sulphate incorporation analyses. Total RNA was extracted from bovine primary chondrocytes which were cultured either in 1 mM concentration of glucosamine, galactosamine, mannosamine, glucosamine 3-sulphate, glucosamine 6-sulphate or galactosamine 6-sulphate for 0, 4, 8 and 24 h, or in three different concentrations (control, 100 μM and 1 mM) of glucosamine sulphate salt or glucose for 24 or 72 h. Northern blot assay showed that neither hexosamines nor glucosamine sulphate salt stimulated aggrecan and HAS-2 mRNA expression. Glycosaminoglycan synthesis remained at a control level in the treated cultures, with the exception of mannosamine which inhibited 35S-sulphate incorporation in low-glucose DMEM treatment. In our culture conditions, hexosamines or their sulphated forms did not increase aggrecan expression or 35S-sulphate incorporation.  相似文献   

4.
Agricultural environments allow study of evolutionary change in plants. An example of evolution within agroecological systems is the selection for resistance to the herbicide glyphosate within the weed, Conyza canadensis. Changes in survivorship and reproduction associated with the development of glyphosate resistance (GR) may impact fitness and influence the frequency of occurrence of the GR trait. We hypothesized that site characteristics and history would affect the occurrence of GR C. canadensis in field margins. We surveyed GR occurrence in field margins and asked whether there were correlations between GR occurrence and location, crop rotation, GR crop trait rotation, crop type, use of tillage, and the diversity of herbicides used. In a field experiment, we hypothesized that there would be no difference in fitness between GR and glyphosate‐susceptible (GS) plants. We asked whether there were differences in survivorship, phenology, reproduction, and herbivory between 2 GR and 2 GS populations of C. canadensis in agrestal and ruderal habitats. We found that geographic location was an important factor in the occurrence of GR C. canadensis in field margins. Although not consistently associated with either glyphosate resistance or glyphosate susceptibility, there were differences in phenology, survivorship, and herbivory among biotypes of C. canadensis. We found equal or greater fitness in GR biotypes, compared to GS biotypes, and GR plants were present in field margins. Field margins or ruderal habitats may provide refugia for GR C. canadensis, allowing reproduction and further selection to occur as seeds recolonize the agrestal habitat. Agricultural practices may select for ecological changes that feed back into the evolution of plants in ruderal habitats.  相似文献   

5.
Glucosamine and glucosamine sulphate have been promoted as a disease-modifying agent to improve the clinical symptoms of osteoarthritis. The precise mechanism of the action of the suggested positive effect of glucosamine or glucosamine sulphate on cartilage proteoglycans is not known, since the level of glucosamine in plasma remains very low after oral administration of glucosamine sulphate. We examined whether exogenous hexosamines or their sulphated forms would increase steady-state levels of aggrecan and hyaluronan synthase (HAS) or glycosaminoglycan synthesis using Northern blot and (35)S-sulphate incorporation analyses. Total RNA was extracted from bovine primary chondrocytes which were cultured either in 1 mM concentration of glucosamine, galactosamine, mannosamine, glucosamine 3-sulphate, glucosamine 6-sulphate or galactosamine 6-sulphate for 0, 4, 8 and 24 h, or in three different concentrations (control, 100 microM and 1 mM) of glucosamine sulphate salt or glucose for 24 or 72 h. Northern blot assay showed that neither hexosamines nor glucosamine sulphate salt stimulated aggrecan and HAS-2 mRNA expression. Glycosaminoglycan synthesis remained at a control level in the treated cultures, with the exception of mannosamine which inhibited (35)S-sulphate incorporation in low-glucose DMEM treatment. In our culture conditions, hexosamines or their sulphated forms did not increase aggrecan expression or (35)S-sulphate incorporation.  相似文献   

6.
Glutamate-l-semialdehyde (GSA) aminotransferase catalyses the final step in the C5 pathway converting glutamate to the tetrapyrrole precursor δ-aminolaevulinic acid. This enzyme is sensitive to gabaculine (2,3-dihydro-3-amino benzoic acid) and to 4-amino-5-fluoropentanoic acid (AFPA), which are irreversible, mechanism-based inhibitors of pyridoxal phosphatedependent enzymes. Spontaneous mutants of Synechococcus PCC6301 resistant to these inhibitors contain altered enzyme that displays corresponding resistance to high concentrations of the inhibitor. The enzyme from strain GR6, resistant to both inhibitors, contains a three-amino-acid deletion at positions 5–7 and a Met248 → Ile substitution. The enzyme from strain K40 resistant to AFPA but not to gabaculine, contains a Ser163 → Thr substitution. GSA aminotransferases containing either the deletion or the substitution that are characteristic of the GR6 mutant were produced in Escherichia coli using the expression vector pMalc2. These engineered mutant enzymes were characterized in terms of their catalytic parameters and sensitivities to gabaculine and AFPA. Furthermore, maltose binding protein/aminotransferase fusion proteins were characterized spectrophotometrically to monitor the interaction of bound cofactor with diamino- and dioxocompounds related to the substrate and both inhibitors. Results were compared with those for similarly produced recombinant wild-type, K40 and GR6 GSA aminotransferases. The engineered products with either the N-terminal deletion or the Met248 → Ile substitution displayed catalytic efficiencies that were intermediate between the wild-type and GR6 or K40 enzymes. However, with respect to their absorption spectra, sensitivity to inhibitors and the reactivity of bound cofactor, they were essentially wild-type. These in vitro studies demonstrate that both changes in enzyme structure are necessary to obtain the distinctive properties of the GR6 aminotransferase, including resistance to high concentrations of gabaculine and AFPA.  相似文献   

7.
A chloramphenicol-resistant mutant was isolated by mutagenesis with manganese to make a study of the genetics and function of mitochondrial genes in the higher basidiomycete, Pleurotus ostreatus. The resistant mutant obtained was shown to grow well on media containing up to 4mg/ml chloramphenicol. The result of genetic analysis suggested that the origin of the factor for chloramphenicol resistance of the mutant might be mitochondrial.  相似文献   

8.
The inhibition of growth and cell wall synthesis by 3-amino-3-deoxy-D-glucose (3-AG), which is known to be one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., was almost completely overcome by glucosamine and N-acetylglucosamine in Staphylococcus aureus but scarcely affected by D-glucose and D-fructose. The antibiotic did not inhibit the incorporation of [14C]glucosamine and [3H]N-acetylglucosamine into the acid-insoluble fraction, but rather enhanced the incorporation of [14C]glucosamine. On the other hand, it inhibited the incorporation of D-[14C]fructose into the cell wall fraction but hardly affected the incorporation of D-[14C]fructose into the acid-insoluble fraction in the presence of pencillin G. Based on these results, it is suggested that the site of primary action of 3-AG is the formation of glucosamine-6-phosphate from D-fructose-6-phosphate, which is catalyzed by glucosamine synthetase [EC 2.6.1.16].  相似文献   

9.
In 3T3-L1 adipocytes, we previously reported that glucosamine impairs insulin stimulation of glucose transport, which is accompanied by impaired insulin stimulation of serine/threonine kinase Akt. To examine the role of Akt in glucosamine-induced insulin resistance, we investigated time course for insulin stimulation of Akt activity and glucose transport during recovery from glucosamine-induced insulin resistance. After induction of insulin resistance by glucosamine, we washed cells to remove glucosamine and incubated them for various times. After one hour, insulin stimulated-glucose transport was significantly increased and continued to increase up to 6-24 h. Insulin stimulation of Akt, however, did not increase after 1-3 h and began to slightly increase after 6 h. Next, we investigated effects of osmotic shock and vanadate on glucose transport in glucosamine-treated cells and found that glucosamine completely inhibited their actions in these cells. These data suggest that an Akt-independent mechanism is operative in glucosamine-induced insulin resistance and glucosamine impairs glucose transport stimulated by various stimuli involving and not involving Akt activation.  相似文献   

10.
Circular RNAs (circRNAs) has been shown to play an important role in the progression of various cancers. However, the function and underlying mechanisms of circRNAs affecting chemotherapy resistance in esophageal squamous cell carcinoma (ESCC) remain largely unknown. In this study, we used gefitinib-resistant (GR) ESCC cells to investigate the function of circPSMC3 and clarify the underlying mechanism in chemotherapy resistance in ESCC. The results suggested that circPSMC3 expression was downregulated, but miR-10a-5p was upregulated in ESCC tissues and cells, as well as in GR ESCC cells. CircPSMC3 overexpression increased the sensitivity of ESCC cells to gefitinib, as indicated by reduced half maximal inhibitory concentration value, increased apoptosis rate and cleaved caspase-3 protein expression. CircPSMC3 directly interacted with miR-10a-5p and inhibited the expression of miR-10a-5p. Phosphatase and tensin homolog (PTEN) was a direct target of miR-10a-5p and circPSMC3 promoted PTEN expression via decreasing miR-10a-5p level. Moreover, the effect of circPSMC3 on resistance of GR ESCC cells to gefitinib was remarkably reduced by restoration of miR-10a-5p and downregultion of PTEN. Taken together, these observations suggested that upregulation of circPSMC3 overcame resistance of GR ESCC cells to gefitinib by modulating the miR-10a-5p/PTEN axis, which provide a new therapeutic strategy for overcoming gefitinib resistance in ESCC.  相似文献   

11.
Gabaculine (2,3-dihydro 3-amino benzoic acid) is a potent inhibitor of tetrapyrrole biosynthesis in organisms that use the C5 pathway for the synthesis of δ-aminolaevulinic acid. Glutamate semialdehyde aminotransferase (GSA-AT), the enzyme catalysing the formation of this key precursor of tetrapyrroles, is normally inhibited by concentrations of gabaculine in the order of 5 μM. However, in Synechococcus 6301 strain GR6, a cyanobacterium that is resistant to 100 μM gabaculine, this enzyme has undergone two changes in structure: a deletion of three amino acids from positions 5 to 7 and the substitution of isoleucine for methionine at position 248. To establish the effect in vivo of these specific changes in the gene for GSA-AT (hemL), a suicide vector (pHS7) containing an antibiotic cassette was constructed to achieve the replacement, by homologous recombination, of the wild-type hemL gene in the chromosome by a modified form of the gene. Recombinant strains of Synechococcus 7942 obtained using pHS7-hemL GR6 were indistinguishable from Synechococcus 6301 GR6 in terms of the resistance of growth and of chlorophyll accumulation to high concentrations of gabaculine, while a wild-type recombinant produced using pHS7-hemL WT had retained its sensitivity. Southern hybridisation using gene probes for hemL, amp r and cm r confirmed that chromosomal integration of the plasmids had occurred in both WT and GR6 recombinants. Growth and chlorophyll accumulation in equivalent strains with the hemL gene containing either the deletion or the transition characteristic of Synechococcus 6301 GR6 were inhibited by 10 μM gabaculine. Consequently, resistance in vivo to high concentrations of this compound is dependent on both the changes in gene/enzyme structure. This investigation has established the effectiveness of the suicide vector pHS7 for studying the effect in vivo of specific changes in the hemL gene. It has also demonstrated that replacement of the wild-type gene by that from Synechococcus 6301 GR6 is sufficient to confer resistance in vivo to high concentrations of gabaculine. Received: 7 October 1996 / Accepted: 15 January 1997  相似文献   

12.
O-linked N-acetylglucosamine (O-GlcNAc) is attached to and detached from proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. It has been proposed that streptozotocin induces pancreatic beta-cell death by blocking O-GlcNAcase and increasing O-GlcNAc. To elucidate the relationship between cytosolic O-GlcNAc accumulation and beta-cell death, we treated beta-cell lines HIT-T15 and Min6 with glucosamine. Glucosamine markedly reduced cell viability in both cell lines only at 10 mM. The measurement of cytosolic O-GlcNAc under glucosamine treatment revealed that O-GlcNAc accumulation was observed even at 2 mM glucosamine and maximized at 5 mM, but did not occur very well at 10 mM. Furthermore, 100 microM PUGNAc, an inhibitor of O-GlcNAcase, increased cytosolic O-GlcNAc but did not induce cell death in these cells. Therefore, no correlation between accumulation of cytosolic O-GlcNAc and beta-cell death was suggested. Alternatively, inosine partially rescued cell death induced by glucosamine in Min6 cells, suggesting that energy depletion partly contributes to beta-cell death by glucosamine.  相似文献   

13.
Only some strains of Rhizobium leguminosarum biovar viciae can efficiently nodulate varieties of peas such as cv. Afghanistan, which carry a recessive allele that blocks efficient nodulation by most western isolates of R. I. viciae. One strain (TOM) which can nodulate cv. Afghanistan peas has a gene (nodX) that is required to overcome the nodulation resistance. Strain TOM makes significantly lower amounts of lipo-oligosaccharide nodulation factors than other strains of R. I. viciae. and this effect appears to be due to lower levels of nod gene induction. These nodulation factors are similar to those from other R. I. viciae. strains in that they consist of an oligomer of four or five β1-4-linked N-acetylglucosamine residues in which the terminal non-reducing glucosamine carries an O-acetyl group and a C18:4 or C18:1N-acyl group. However, one of the nodulation factors made by strain TOM differs from the factors made by other strains of R. I. viciae. in that it carries an O-acetyl group on the C-6 of the reducing N-acetylglucosamine residue. This acetylation is NodX-dependent and the pentameric nodulation factor is acetylated on the reducing N-acetylglucosamine residue whereas the tetrameric nodulation factor is not. Although the nodL gene product is also an O-acetyl transferase (it O-acetylates the C-6 of the terminal non-reducing glucosamine), there is very little similarity between the amino acid sequences of these two acetyl transferases.  相似文献   

14.
Glucosamine induced insulin resistance in 3T3-L1 adipocytes, which was associated with a 15% decrease in cellular ATP content. To study the role of ATP depletion in insulin resistance, we employed sodium azide (NaN3) and dinitrophenol (DNP), which affect mitochondrial oxidative phosphorylation, to achieve a similar 15% ATP depletion. Unlike glucosamine, NaN3 and DNP markedly increased basal glucose transport, and the increased basal glucose transport was associated with increased GLUT-1 content in the plasma membrane without changes in total GLUT-1 content. These agents, like glucosamine, did not affect the early insulin signaling that is implicated in insulin stimulation of glucose transport. In cells with a severe 40% ATP depletion, basal glucose transport was similarly elevated, and insulin-stimulated glucose transport was similar in cells with 15% ATP depletion. In these cells, however, early insulin signaling was severely diminished. These data suggest that cellular ATP depletion by glucosamine, NaN3, and DNP exerts differential effects on basal and insulin-stimulated glucose transport and that ATP depletion per se does not induce insulin resistance in 3T3-L1 adipocytes.  相似文献   

15.
It has been hypothesized that glucose-induced insulin resistance is mediated by accumulation of UDP-N-acetylhexosamines (UDP-HexNAcs). In a previous study on rat epitrochlearis muscles incubated with high concentrations of glucose and insulin (Kawanaka K, D-H Han, J Gao, LA Nolte, and JO Holloszy. J Biol Chem 276: 20101-20107, 2001), we found that insulin resistance developed even when the increase in UDP-Hex-NAcs was prevented. Furthermore, actinomycin D completely prevented glucose-induced insulin resistance despite a greater accumulation of UDP-HexNAcs. In the present study, we used the same epitrochlearis muscle preparation, as well as the rat hemidiaphragm, to determine whether, like glucose, glucosamine causes insulin resistance by an actinomycin D-inhibitable process. Incubation of diaphragm muscles with 10 mM glucosamine for 3 h resulted in an approximately fivefold increase in UDP-HexNAcs, an approximately 50% reduction in insulin responsiveness of glucose transport, and a 58% reduction in ATP concentration. These effects of glucosamine were not prevented by actinomycin D. Incubation of epitrochlearis muscles with 20 mM glucosamine for 3 h or with 10 mM glucosamine for 5 h also caused large decreases in insulin responsiveness of glucose transport but with no reduction in ATP concentration. Actinomycin D did not prevent the glucosamine-induced insulin resistance. The insulin-induced increases in tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the binding of PI 3-kinase to IRS-1 were decreased approximately 60% in epitrochlearis muscles exposed to glucosamine. This is in contrast to glucose-induced insulin resistance, which was not associated with impaired insulin signaling. These results provide evidence that glucosamine and glucose induce insulin resistance by different mechanisms.  相似文献   

16.
Piperine is a major component of black (Piper nigrum Linn) and long pepper (Piper longum Linn) used widely in various systems of traditional medicine. We have evaluated the effect of piperine on mitochondrial tricarboxylic acid cycle and phase I and glutathione-metabolizing enzymes in Benzo(a)pyrene induced experimental lung carcinogenesis in swiss albino mice. Lung cancer bearing mice showed a significant decrease in the activities of mitochondrial enzymes-isocitrate dehydrogenase (ICDH), -ketoglutarate dehydrogenase (KDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and significantly increased NADPH-Cytochorome reductase (NADPH-C reductase), cytochrome P450 (cyt-p450) and cytochrome b5(cyt-b5). The activities of glutathione-metabolizing enzymes glutathione peroxidase(GPx), glutathione reductase (GR) and glucose-6-phospho dehydrogenase(G6PDH) were significantly lowered in lung-cancer bearing mice when compared with control mice. Piperine supplementation to tumour-induced animals significantly lowered the phase-I enzymes (NADPH-C reductase, cyt-p450 and cyt-b5)) and there was a rise in glutathione-metabolizing enzymes (GPx, GR and G6PDH), which indicated an antitumour and anti-cancer effect. Comparison of normal control mice and mice administered piperine only as drug control showed no significant variations in enzyme activities. Piprine administration to benzo(a)pyrene induced animals significantly increased the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.  相似文献   

17.
We have isolated from nitrous acid cleavage products of heparin two major octasaccharide fragments which bind with high affinity to human antithrombin. Octasaccharide S, with the predominant structure iduronic acid----N-acetylglucosamine 6-O-sulfate----glucuronic acid-----N-sulfated glucosamine 3,6-di-O-sulfate----iduronic acid 2-O-sulfate----N-sulfated glucosamine 6-O-sulfate----iduronic acid 2-O-sulfate----anhydromannitol 6-O-sulfate, is sensitive to cleavage by Flavobacterium heparinase as well as platelet heparitinase and binds to antithrombin with a dissociation constant of (5-15) X 10(-8) M. Octasaccharide R, with the predominant structure iduronic acid 2-O-sulfate----N-sulfated glucosamine 6-O-sulfate----iduronic acid----N-acetylglucosamine 6-O-sulfate----glucuronic acid----N-sulfated glucosamine 3,6-di-O-sulfate----iduronic acid 2-O-sulfate----anhydromannitol 6-O-sulfate, is resistant to degradation by both enzymes and binds antithrombin with a dissociation constant of (4-18) X 10(-7) M. The occurrence of a 15-17% replacement of N-sulfated glucosamine 3,6-di-O-sulfate with N-sulfated glucosamine 3-O-sulfate and a 10-12% replacement of iduronic acid with glucuronic acid in both octasaccharides indicates that these substitutions have little or no effect on the binding of the oligosaccharides to the protease inhibitor. When bound to antithrombin, both octasaccharides produce a 40% enhancement in the intrinsic fluorescence of the protease inhibitor and a rate of human factor Xa inhibition of 5 X 10(5) M-1 s-1 as monitored by stopped-flow fluorometry. This suggests that the conformation of antithrombin in the region of the factor Xa binding site is similar when the protease inhibitor is complexed with either octasaccharide.  相似文献   

18.
19.
20.
Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix. Further studies are needed to relate these in vitro findings to the retardation of cartilage degradation reported in OA trials investigating glucosamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号