首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Szaciłowski K 《Bio Systems》2007,90(3):738-749
Analogies between photoactive nitric oxide generators and various electronic devices: logic gates and operational amplifiers are presented. These analogies have important biological consequences: application of control parameters allows for better targeting and control of nitric oxide drugs. The same methodology may be applied in the future for other therapeutic strategies and at the same time helps to understand natural regulatory and signaling processes in biological systems.  相似文献   

2.
Whether biological or electronic, man-engineered computation is based on logic circuits assembled with binary gates that are interconnected to perform Boolean operations. We report here the rewiring of the SOS system of Escherichia in a fashion that makes the output of both the recA and lexA promoters to faithfully follow the pattern of a binary composite OR-NOT gate (ORN) in which the inputs are DNA damage (e.g. nalidixic acid addition) and IPTG as an exogenous signal. Unlike other non-natural gates whose implementation requires changes in genes and promoters of the genome of the host cells, this ORN was brought about by the sole addition of wild-type bacteria with a plasmid encoding a module for LacI(q)-dependent expression of lexA. Specifically, we demonstrate that the interplay between native, chromosomally-encoded components of the SOS system and the extra parts engineered in such a plasmid made the desired performance to happen without any modification of the core DNA-damage response network. It is thus possible to artificially interface autonomous cell networks with a predetermined logic by means of Boolean gates built with regulatory elements already functioning in the recipient organism.  相似文献   

3.
4.
The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation.  相似文献   

5.
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules.  相似文献   

6.
7.
The ability of the human brain to carry out logical reasoning can be interpreted, in general, as a by-product of adaptive capacities of complex neural networks. Thus, we seek to base abstract logical operations in the general properties of neural networks designed as learning modules. We show that logical operations executable by McCulloch–Pitts binary networks can also be programmed in analog neural networks built with associative memory modules that process inputs as logical gates. These modules can interact among themselves to generate dynamical systems that extend the repertoire of logical operations. We demonstrate how the operations of the exclusive-OR or the implication appear as outputs of these interacting modules. In particular, we provide a model of the exclusive-OR that succeeds in evaluating an odd number of options (the exclusive-OR of classical logic fails in his case), thus paving the way for a more reasonable biological model of this important logical operator. We propose that a brain trained to compute can associate a complex logical operation to an orderly structured but temporary contingent episode by establishing a codified association among memory modules. This explanation offers an interpretation of complex logical processes (eventually learned) as associations of contingent events in memorized episodes. We suggest, as an example, a cognitive model that describes these “logical episodes”.  相似文献   

8.
9.
Most of the DNA logic gates employ fluorescent or colorometric signals as their outputs, which were limited by the cumbersome handling procedures, lack of portability and lower sensitivity. To the best of our knowledge, the logic gates with electrochemiluminescent (ECL) signal as their outputs have not been reported. In response, we report here the construction of DNA molecular logic gates that produce ECL signals as their outputs, having the advantages of versatility, low background and simplified optical setup. The logic gates are based on the T-rich or C-rich oligonucleotides for the selective analysis of Hg(2+) and Ag(+) ions using energy or electron transfer-quenching path. Efficient and stable quenching of ECL of Ru bis(2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid) N-hydroxysuccinimide ester by oxidizing ferrocene at the Au electrode enabled us to use Hg(2+) and Ag(+) ions as inputs that activate logic gates, and to execute ECL of Ru(II) as readout signals for logic gate operations.  相似文献   

10.
11.
In recent years, an intense interest has grown in the DNA logic gates having high potential for computation at literally the “nano-size” level. A limitation of traditional DNA logic gates is that each target strand hybridizes with only a single copy of the probe. This 1:1 hybridization radio limits the gain of the approach and thus its sensitivity. The exponential amplification of nucleic acids has become a core technology in medical diagnostics and has been widely used for the construction of DNA sensor, DNA nanomachine and DNA sequencing. It would be of great interest to develop DNA-based logic systems with exponential amplification for the output signal. In the present study, a series of three-input DNA logic gates with the cycle isothermal amplification based on nicking endonuclease (NEase) are designed. Very low concentrations of the analytes were sufficient to initiate an autocatalytic cascade, achieving a significant improvement of the detection limit, 100-fold improvement compared to the non-autocatalytic system. This was achieved by engineering a simple and flexible biological circuit designed to initiate a cascade of events to detect and amplify a specific DNA sequence. This procedure has the potential to greatly simplify the logic operation because amplification can be performed in “one-pot”.  相似文献   

12.
13.
Biological logic gates are smart probes able to respond to biological conditions in behaviors similar to computer logic gates, and they pose a promising challenge for modern medicine. Researchers are creating many kinds of smart nanostructures that can respond to various biological parameters such as pH, ion presence, and enzyme activity. Each of these conditions alone might be interesting in a biological sense, but their interactions are what define specific disease conditions. Researchers over the past few decades have developed a plethora of stimuli‐responsive nanodevices, from activatable fluorescent probes to DNA origami nanomachines, many explicitly defining logic operations. Whereas many smart configurations have been explored, in this review we focus on logic operations actuated through fluorescent signals. We discuss the applicability of fluorescence as a means of logic gate implementation, and consider the use of both fluorescence intensity as well as fluorescence lifetime.  相似文献   

14.
This paper presents results on the design and analysis of a robust genetic Muller C-element. The Muller C-element is a standard logic gate commonly used to synchronize independent processes in most asynchronous electronic circuits. Synthetic biological logic gates have been previously demonstrated, but there remain many open issues in the design of sequential (state-holding) logic operations. Three designs are considered for the genetic Muller C-element: a majority gate, a toggle switch, and a speed-independent implementation. While the three designs are logically equivalent, each design requires different assumptions to operate correctly. The majority gate design requires the most timing assumptions, the speed-independent design requires the least, and the toggle switch design is a compromise between the two. This paper examines the robustness of these designs as well as the effects of parameter variation using stochastic simulation. The results show that robustness to timing assumptions does not necessarily increase reliability, suggesting that modifications to existing logic design tools are going to be necessary for synthetic biology. Parameter variation simulations yield further insights into the design principles necessary for building robust genetic gates. The results suggest that high gene count, cooperativity of at least two, tight repression, and balanced decay rates are necessary for robust gates. Finally, this paper presents a potential application of the genetic Muller C-element as a quorum-mediated trigger.  相似文献   

15.
Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems.  相似文献   

16.
We have developed an array of seven deoxyribozyme-based molecular logic gates that behaves as a full adder in a single solution, with three oligonucleotides as inputs and two independent fluorogenic cleavage reactions as carry and sum outputs. The sum output consisted of four new deoxyribozyme-based logic gates: an ANDAND gate and three ANDNOTANDNOT gates. These gates required the design of a generic three-input deoxyribozyme-based logic gate that can use any three-way combination of activating or inactivating inputs. This generic gate design utilizes an additional inverting element that hybridizes to convert YES logic into NOT logic and vice versa. The system represents the first solution-phase, single test tube, enzymatic full adder and shows the complexity of control over molecular scale events that can be achieved with deoxyribozyme-based logic gates. Similar systems could be applied to control autonomous therapeutic and diagnostic devices.  相似文献   

17.
18.
Klein JP  Leete TH  Rubin H 《Bio Systems》1999,52(1-3):15-23
Energy dissipation associated with logic operations imposes a fundamental physical limit on computation and is generated by the entropic cost of information erasure, which is a consequence of irreversible logic elements. We show how to encode information in DNA and use DNA amplification to implement a logically reversible gate that comprises a complete set of operators capable of universal computation. We also propose a method using this design to connect, or 'wire', these gates together in a biochemical fashion to create a logic network, allowing complex parallel computations to be executed. The architecture of the system permits highly parallel operations and has properties that resemble well known genetic regulatory systems.  相似文献   

19.
20.
MOTIVATION: MicroRNAs (miRNAs) are small non-coding RNAs that cause mRNA degradation and translational inhibition. They are important regulators of development and cellular homeostasis through their control of diverse processes. Recently, great efforts have been made to elucidate their regulatory mechanism, but the functions of most miRNAs and their precise regulatory mechanisms remain elusive. With more and more matched expression profiles of miRNAs and mRNAs having been made available, it is of great interest to utilize both expression profiles to discover the functional regulatory networks of miRNAs and their target mRNAs for potential biological processes that they may participate in. RESULTS: We present a probabilistic graphical model to discover functional miRNA regulatory modules at potential biological levels by integrating heterogeneous datasets, including expression profiles of miRNAs and mRNAs, with or without the prior target binding information. We applied this model to a mouse mammary dataset. It effectively captured several biological process specific modules involving miRNAs and their target mRNAs. Furthermore, without using prior target binding information, the identified miRNAs and mRNAs in each module show a large proportion of overlap with predicted miRNA target relationships, suggesting that expression profiles are crucial for both target identification and discovery of regulatory modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号