首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A conductometric sensor using microtubules of polyaniline as transducer cum immobilization matrix is reported, capable of detecting ethanol in liquid phase. Enzyme ADH (alcohol dehydrogenase) and its coenzyme NAD+ have been used to improve the selectivity of the sensor. The sensor concept is based on the protonation of the polyaniline by the hydrogen ion produced in the enzyme-catalyzed reaction, leading to changes in the electrical conductance of the polyaniline. The sensor works well on the physiological pH, can detect ethanol as low as 0.02% (v/v) (0.092 M) and has a linear trend at par healthcare guidelines. The sensor responses were measured in various permutation and combination of enzyme and coenzyme concentrations and site of immobilization. The sensor shows minor interference with other functional groups and alcohols. The possible causes for such interference have been discussed.  相似文献   

2.
Pyrrole was electropolymerized onto a Pt electrode in the presence of LiClO(4) and horseradish peroxidase (HRP). This HRP-based biosensor has been used for the amperometric detection of rifampicin (RIF) in the presence of a constant concentration of H(2)O(2). The C(H(2)O(2)) as well as the applied potential (E(ap)) and the pH of the phosphate buffer have simultaneously been optimized through a central composite design. Under these conditions, repeatability, reproducibility, and stability of the modified electrode have been analyzed. The detection limit for RIF has been calculated taking into account the probability of false-positive (alpha) and -negative (beta), reaching a value of 5.06x10(-6) mol dm(-3). The biosensor was applied to the determination of RIF in pharmaceutical preparations and biological samples.  相似文献   

3.
Phenylketonuria (PKU) is a disease characterized by an inability to metabolize the amino acid l-phenylalanine. The resulting buildup leads to brain damage and ultimately mental retardation in children if their phenylalanine intake is not carefully controlled. The National Institutes of Health recently suggested that people with PKU monitor their phenylalanine levels throughout their life and be put on a low phenylalanine diet. As an alternative approach to analysis using blood, this paper describes the first reagentless dehydrogenase based sensor for the determination of phenylalanine in human urine. The clinical range of phenylalanine in human urine is 20-60mM for people with PKU. Although most clinical analysis is performed using blood, urine was chosen due to its high concentrations of phenylalanine in phenylketonurics, as well as its simple, safe, and painless collection. The sensor is comprised of a carbon paste electrode with nicotinamide adenine dinucleotide (NAD(+)), phenylalanine dehydrogenase (PDH), uricase, and an electron mediator, 3,4-dihydroxybenzaldehyde (3,4-DHB), all mixed into the paste. The electron mediator reacts with the electrode surface to produce two redox species, which catalytically oxidize NADH. The behavior of the electron mediator mixed into a carbon paste electrode has not been previously investigated. Cyclic voltammetry was used to characterize the sensor's response to NADH, and with the addition of PDH and NAD(+) to the paste, its response to phenylalanine in human urine. The limit of detection for phenylalanine is 0.5mM (S/N=3).  相似文献   

4.
A novel electrocatalytic ethanol biosensor using ferrocene-encapsulated palladium (Pd)-linked organically modified sol-gel glass (ormosil) is reported. The alkoxy precursors used to prepare the new ormosil-based electrocatalytic biosensor are Pd-linked glycidoxypropyltrimethoxysilane and trimethoxysilane. Pd-glycidoxypropyltrimethoxysilane (black solution) is made by mixing aqueous solutions of palladium chloride and glycidoxypropyltrimethoxysilane. The new ormosil is made using a Pd-linked silane precursor, trimethoxysilane, an aqueous solution of ferrocene monocarboxylic acid, and HCl. Alcohol dehydrogenase (ADH) is assembled over the ferrocene-ormosil layer using polyvinyl alcohol and then protecting the immobilized enzyme layer using Millipore filter membranes (pore size 1 microm). The electrocatalytic response of immobilized ADH, soluble nicotinamide adenine dinucleotide, and Pd-linked ormosil-encapsulated ferrocene is then observed. The electrocatalytic oxidation of NADH and the subsequent ADH-catalyzed formation of NADH are monitored electrochemically. Typical results recorded after the addition of varying concentrations of ethanol are reported; however, the sensor is sensitive to other alcohol and known ADH-sensitive substrates. The stability and reproducibility of the new ethanol biosensor are reported.  相似文献   

5.
Neural prostheses often suffer from undesired chronic inflammatory tissue response. This can lead to neuronal loss and formation of glial scar tissue, which would serve as a barrier to neural signal transduction. In situ monitoring of neuro-inflammatory cytokines may improve our understanding of device induced inflammatory responses. Furthermore, early detection of the onset and degree of inflammation and releasing drugs accordingly may lead to improved long term performance of such implanted devices. For this reason, biosensor applying aptamer as probe and non-faradic electrochemical impedance spectroscopy (NIS) as the detection method has been developed. Aptamers, certain kinds of DNA or RNA molecules which can bind variety of molecules at high specificity, have the overwhelming advantages over antibodies of low cost and ease of use. Platelet-derived growth factor BB (PDGF-BB), one of the important cytokines involved in neural inflammation, has been selected as our detection target. Binding of PDGF to its aptamer immobilized on the silicon electrode surface lead to a decrease in capacitance measured by NIS. A good linear relationship between the decrease of capacitance and the logarithm of protein concentration was obtained, which proves the feasibility of quantitative measurements. By sweeping the applied electrode potential of potentiostatic EIS, -0.1 V to +0.1 V was determined to be the optimal range for achieving best discrimination between specific target binding and non-specific protein adsorption on aptamer-modified silicon surface. Under such conditions, the specificity of the detection measured by the ratio of the positive to negative control is around 10:1 and the detection limit is approximately 1 microg/ml (40 nM). The online measurement result exhibited negligible response for non-specific adsorption but significant signal changes for the specific target. Since the non-faradic strategy does not require any reagent to be loaded when performing the test, together with the ability of online measurements, this biosensor design is promising for in vivo monitoring.  相似文献   

6.
Although biosensors are by means suitable for continuous biomedical monitoring, due to fouling and blood clotting, in vivo performance is far from optimal. For this reason, ultrafiltration, microdialysis or open tubular flow is frequently used as interface. To secure quantitative recoveries of the analyte of interest, sampling at submicrolitre level will be necessary which in turn necessitates the development of small and versatile biosensor devices. Here, a miniaturised biosensor device, which directly can be connected to various interfaces will be presented. The biosensor device consists of a pulsefree pump and a biosensor with an internal volume of 10–20 nl. In this article, the production as well as the construction of the flow-through cell of the biosensor will be discussed. The advantages and disadvantages of several production processes will be demonstrated and a detailed protocol for the production of such a nanoliter flow-through cell will be presented. With respect to the bio-selector, several permselective membranes have been tested on their performance characteristics. Results obtained with these biosensors will be presented and discussed. Finally, a protocol based upon in situ electropolymerisation for the immobilisation of the biological component was defined and several biosensors based upon this principle have been produced and tested for the monitoring of glucose respectively lactate. To demonstrate, data obtained during a variety of in vivo studies at different clinical relevant applications will be presented.  相似文献   

7.
Here we describe an alternative approach to currently used cytotoxicity analyses through applying eukaryotic microbial biosensors. The yeast Saccharomyces cerevisiae was genetically modified to express firefly luciferase, generating a bioluminescent yeast strain. The presence of any toxic chemical that interfered with the cells' metabolism resulted in a quantitative decrease in bioluminescence. In this study, it was demonstrated that the luminescent yeast strain senses chemicals known to be toxic to eukaryotes in samples assessed as nontoxic by prokaryotic biosensors. As the cell wall and adaptive mechanisms of S. cerevisiae cells enhance stability and protect from extremes of pH, solvent exposure, and osmotic shock, these inherent properties were exploited to generate a biosensor that should detect a wide range of both organic and inorganic toxins under extreme conditions.  相似文献   

8.
There is increasing evidence that hydrogen peroxide (H2O2) may act as a neuromodulator in the brain, as well as contributing to neurodegeneration in diseased states, such as Parkinson's disease. The ability to monitor changes in endogenous H2O2 in vivo with high temporal resolution is essential in order to further elucidate the roles of H2O2 in the central nervous system. Here, we describe the in vitro characterization of an implantable catalase-based H2O2 biosensor. The biosensor comprises two amperometric electrodes, one with catalase immobilized on the surface and one without enzyme (blank). The analytical signal is then the difference between the two electrodes. The H2O2 sensitivity of various designs was compared, and ranged from 0 to 56 ± 4 mA cm−2 M−1. The most successful design incorporated a Nafion® layer followed by a poly-o-phenylenediamine (PPD) polymer layer. Catalase was adsorbed onto the PPD layer and then cross-linked with glutaraldehyde. The ability of the biosensors to exclude interference from ascorbic acid, and other interference species found in vivo, was also tested. A variety of the catalase-based biosensor designs described here show promise for in vivo monitoring of endogenous H2O2 in the brain.  相似文献   

9.
A robust microbial biosensor was constructed from a bionanocomposite prepared by a direct mixing of bacterial cells of Gluconobacter oxydans and carbon nanotubes with ferricyanide employed as a mediator for enhanced sensitivity of ethanol oxidation. A successful integration of the device into flow injection analysis mode of operation provided a high sensitivity of detection of (74 ± 2.7) μA mM−1 cm−2, a low detection limit of 5 μM and a linear range from 10 μM up to 1 mM. A short response time of the biosensor allowed a sample throughput of 67 h−1 at 0.3 ml min−1. The biosensor exhibited high operational stability with a decrease in the biosensor response of 1.7% during 43 h of continuous operation. The device was used to analyse ethanol in fermentation samples with a good agreement with a HPLC method.  相似文献   

10.
The development of a novel biosensor system for measuring the respiratory activity of whole eubacterial cells is described. The biosensor incorporates a physically immobilized layer of cells held in intimate contact with an amperometric transducing electrode and uses a chemical mediator, potassium ferricyanide, to divert electrons from the respiratory system of the bacteria to the poised electrode. The current thus produced is proportional to the level of respiratory activity of the immobilized bacterial cells and can be monitored by a computer interface system. The paper outlines the principles of the biosensor and describes the results of a screen of potentially useful eubacteria. Also described are the effects of physical parameters on the sensor and a strategy for the long term preservation of the biosensor by freeze-drying.  相似文献   

11.
Gouda  M.D.  Thakur  M.S.  Karanth  N.G. 《Biotechnology Techniques》1997,11(9):653-655
An amperometric biosensor consisting of two enzyme membranes, one a potato layer rich in acid phosphatase and the other immobilized glucose oxidase membrane, when operated in conjunction with a Clark type dissolved O 2 elec-trode, detected the pesticide, Paraoxon, at 1 g/ml. The advantage of this biosensor is that the inhibition of acid phosphatase by the pesticide is reversible and thereby eliminates the problem of enzyme inactivation and the necessity for its reactivation which is not efficient.  相似文献   

12.
Using chromatography on nanostructured carbon sorbent we had isolated an unusual nanocomplex from filling grains of wheat and maize, which consists of only phosphatidylinositol (PI) and one protein-glutamate dehydrogenase (GDh). It was very surprising that this nanocomplex shows activity of Nicotinamide adenine dinucleotide phosphate-GDh (NADP-GDh) without any treatment. Thus, the whole body of nanocomplex shows its activity without disturbing its integrity. This makes the nanocomplex very convenient for using it as a biosensor. The main feature of nanocomplex is its high sensitivity to ammonia ions. Linear response concentration for nanocomplex is from 0.5 microM to 10 microM ammonia ions. Due to these properties the nanocomplex may be very useful as nanobiosensor for ecological monitoring of pollution by sewer waters of natural reservoirs-lakes and rivers. Also this nanosensor can be applied for determination of ammonia ions, NADPH and 2-oxoglutarate in biological liquids for clinical diagnostic.  相似文献   

13.
Metabolic activity of cultured cells can be monitored by measuring changes in the pH of the surrounding medium caused by metabolic products such as protons, carbon dioxide or lactic acid. Although many systems designed for this purpose have been reported, almost all of them are based on bulk measurements, where the average metabolic activity of all cells in contact with the device is recorded. Here, we report on a novel biosensor, based on a modified light-addressable potentiometric sensor (LAPS) device, which enables the metabolic activity of cultured cells to be measured with spatial resolution. This is demonstrated here by detecting the differential sensitivity to a cholinergic receptor agonist of two different co-cultured cellular populations. By making simultaneous measurements of the metabolic activity of different cell types seeded on different segments of one sensor, this device not only provides a rapid means of assessing cellular specificity of pharmaceutical compounds but also has the potential of being used to non-invasively monitor humoral as well as synaptic communication between different cell populations in co-culture. The temporal and spatial resolution of the device were investigated and are discussed.  相似文献   

14.
《Process Biochemistry》2014,49(9):1393-1401
In this study, a microbial biosensor for hydrogen sulfide (H2S) detection based on Thiobacillus thioparus immobilized in a gelatin matrix was developed. The T. thioparus was immobilized via either surface adsorption on the gelatin matrix or entrapment in the matrix. The bacterial and gelatin concentration in the support were then varied in order to optimize the sensor response time and detection limit for both methods. The optimization was conducted by a statistical analysis of the measured biosensor response with various bacterial and polymer concentrations. According to our experiments with both immobilization methods, the optimized conditions for the entrapment method were found to be a gelatin concentration of 1% and an optical density of 82. For the surface adsorption method, 0.6% gelatin and an optical density of 88 were selected as the optimal conditions. A statistical model was developed based on the extent of the biosensor response in both methods of immobilization. The maximum change in the potential of the solution was 23.16 mV for the entrapment method and 34.34 mV for the surface absorption method. The response times for the entrapment and adsorption methods were 160 s and 105 s, respectively. The adsorption method is more advantageous for the development of a gas biosensor due to its shorter response time.  相似文献   

15.
An amperometric principle based biosensor containing tissues of cucumber, rich in ascorbic acid oxidase, was used for the detection of organophosphorous (OP) pesticide ethyl paraoxon, which inhibits the activity of ascorbic acid oxidase. The optimal concentration of ascorbic acid used as substrate was found to be 5.67 mM. The biosensor response was found to reach steady state within 2 min. A measurable inhibition (> 10%) was obtained with 10 min incubation of the enzyme electrode with different concentrations of the pesticide. There was a linear relationship between the percentage of inhibition of the enzyme substrate reaction and the pesticide (ethyl paraoxon) concentration in the range 1-10 ppm with a regression value 0.9942.  相似文献   

16.
An optical biosensor was designed for determination of herbicides as aquatic contaminants. Detection was obtained with immobilised Chlorella vulgaris microalgae entrapped on a quartz microfibre filter and placed in a five-membrane-home-made-flow cell. The algal chlorophyll fluorescence modified by the presence of herbicides was collected at the tip of an optical fibre bundle and sent to a fluorimeter. A continuous culture was set up to produce algal cells in reproducible conditions for measurement optimisation. Effects of flow rate, algal density, temperature, and pH on the biosensor response to atrazine were studied. Reversibility and detection limits were determined for DNOC and atrazine, simazine, isoproturon, diuron. Detection of photosystem II (PSII) herbicides was achieved at sub-ppb concentration level.  相似文献   

17.
The highly sensitive and selective potentiometric biosensor for creatinine determination has been developed by us earlier. In it, pH-sensitive field effect transistors were used as transducer and immobilized creatinine deiminase (EC 3.5.4.21)--as a biosensitive element. In the work presented, we optimized this biosensor for creatinine analysis in real samples of dialysate in patients with renal failure. The optimized version of biosensor was applied for on-line monitoring of the level of creatinine in the patient's dialysate fluid in the course of dialysis session. High correlation between the biosensor analysis and traditional Jaffe method was demonstrated.  相似文献   

18.
An integrated water toxicity monitoring system that uses recombinant bioluminescent bacteria was successfully developed for the continuous monitoring and classification of toxicities present in water. This system consists of four channels arranged horizontally inside of a cylinder, with each channel having two small bioreactors that are vertically connected to each other to maintain a separation of the culture reactor from test reactor. This system is easily handled and installed, making its application in the field a potential reality. As well, it performed stably and continuously due to the vertical separation of the culture reactor from the test reactor and a long term operation was also performed because of its small working volume, i.e., only 1 ml for the 1st bioreactor and 2 ml for the 2nd. During an operation with four strains, i.e., EBHJ2, DP1, DK1 and DPD2794, which are responsive to superoxide damage (EBHJ2 and DP1), hydrogen peroxide (DK1), and DNA damage (DPD2794), the O.D. and bioluminescence of the bacterial cultures inside the system were constant when no chemical was injected. However, with the addition of paraquat, hydrogen peroxide or mitomycin C, the bioluminescent responses of the strains were found to be dose-dependent to different concentrations of these chemicals.  相似文献   

19.
The design, construction, and characterization of a prototype-regenerable glucose biosensor based on the reversible immobilization of glucose oxidase (GOx) using cellulose binding domain (CBD) technology is described. GOx, chemically linked to CBD, is immobilized by binding to a cellulose matrix on the sensor-indicating electode. Enzyme immobilization can be reversed by perfusing the cellulose matrix with a suitable eluting solution. An autocavable sensor membrane system is employed which is shown to be practical for use in real microbial fermentations. The prototype glucose biosensor was used without failure or deterioration during fed-batch fermentations of Escherichia coli reaching a maximum cell density of 85 g (dry weight)/L. Medium glucose concentration based on sensor output correlated closely with off-line glucose analysis and was controlled manually at 0.44 +/- 0.2 g/L for 2 h based on glucose sensor output. The sensor enzyme component could be eluted and replaced without interrupting the fermentation. To our knowledge, no other in situ biosensor has been used for such an extended period of time in such a high-cell-density fermentation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
There is increasing evidence that hydrogen peroxide (H2O2) may act as a neuromodulator in the brain, as well as contributing to neurodegeneration in diseased states, such as Parkinson's disease. The ability to monitor changes in endogenous H2O2 in vivo with high temporal resolution is essential in order to further elucidate the roles of H2O2 in the central nervous system. Here, we describe the in vitro characterization of an implantable catalase-based H2O2 biosensor. The biosensor comprises two amperometric electrodes, one with catalase immobilized on the surface and one without enzyme (blank). The analytical signal is then the difference between the two electrodes. The H2O2 sensitivity of various designs was compared, and ranged from 0 to 56 ± 4 mA cm−2 M−1. The most successful design incorporated a Nafion® layer followed by a poly-o-phenylenediamine (PPD) polymer layer. Catalase was adsorbed onto the PPD layer and then cross-linked with glutaraldehyde. The ability of the biosensors to exclude interference from ascorbic acid, and other interference species found in vivo, was also tested. A variety of the catalase-based biosensor designs described here show promise for in vivo monitoring of endogenous H2O2 in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号