首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic mutations at Thr-58 of c-Myc have been detected in Burkitt's lymphoma (BL) tumors and have been shown to affect the transforming potential of the Myc oncoprotein. In addition, the N-terminal domain of c-Myc has been shown to interact with microtubules in vivo, and the binding of c-Myc to alpha-tubulin was localized to amino acids 48 to 135 within the c-Myc protein. We demonstrate that c-Myc proteins harboring a naturally occurring mutation at Thr-58 from BL cell lines have increased stability and are constitutively hyperphosphorylated, which disrupts the in vivo interaction of c-Myc with alpha-tubulin. In addition, we show that wild-type c-Myc-alpha-tubulin interactions are also disrupted during a transient mitosis-specific hyperphosphorylation of c-Myc, which resembles the constitutive hyperphosphorylation pattern of Thr-58 in BL cells.  相似文献   

2.
alpha- and beta-Tubulin are encoded in vertebrate genomes by a family of approximately 6-7 functional genes whose polypeptide products differ in amino acid sequence. In the chicken, one beta-tubulin isotype (c beta 6) has previously been found to be expressed only in thrombocytes and erythroid cells, where it is assembled into a circumferential ring of marginal band microtubules. In light of its unique in vivo utilization and its divergent assembly properties in vitro, we used DNA transfection to test whether this isotype could be assembled in vivo into microtubules of divergent functions. Using an antibody specific to c beta 6, we have found that upon transfection this polypeptide is freely coassembled into an extensive array of interphase cytoplasmic microtubules and into astral and pole-to-chromosome or pole-to-pole microtubules during mitosis. Further, examination of developing chicken erythrocytes reveals that both beta-tubulins that are expressed in these cells (c beta 6 and c beta 3) are found as co-polymers of the two isoforms. These results, in conjunction with efforts that have localized various other beta-tubulin isotypes, demonstrate that to the resolution limit afforded by light microscopy in vivo microtubules in vertebrates are random copolymers of available isotypes. Although these findings are consistent with functional interchangeability of beta-tubulin isotypes, we have also found that in vivo microtubules enriched in c beta 3 polypeptides are more sensitive to cold depolymerization than those enriched in c beta 6. This differential quantitative utilization of the two endogenous isotypes documents that some in vivo functional differences between isotypes do exist.  相似文献   

3.
4.
5.
6.
7.
Microtubule-associated protein 2 (MAP2) derivatized with iodoacetamidotetramethylrhodamine or with iodoacetamidofluorescein binds to microtubules after injection into living interphase cells [Scherson et al, 1984]. The binding of derivatized MAP2 stabilized microtubules in vitro; it was therefore important to check if the binding of MAP2 in vivo perturbed the dynamics and organization of the microtubule network. We have addressed these questions by studying the effect of the injection of derivatized MAP2 on mitosis in PtK 1 cells and on the recovery of the microtubule network from low temperature incubation in interphase cells. We found that the presence of derivatized MAP2 did not change the duration of any mitotic stage and that the injected cell normally completed mitosis. We subsequently showed that the injected MAP2 bound to the microtubules within 5 minutes after injection and remained bound throughout the course of mitosis. The reorganization of the microtubule network upon cooling and rewarming was studied in the cytoplasm of human foreskin fibroblasts (356 cells). During the recovery, the distribution of the fluorescent MAP2 in living cells was identical with the microtubule pattern visualized by immunofluorescence in lysed and fixed cells. In these experiments, the fluorescent MAP2 bound to microtubules can be considered as a nonperturbing reporter of the microtubule network. This result is discussed in terms of the role of MAPs in the dynamics and organization of microtubules in living cells.  相似文献   

8.
Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5.  相似文献   

9.
10.
Stu2p is a member of a conserved family of microtubule-binding proteins and an essential protein in yeast. Here, we report the first in vivo analysis of microtubule dynamics in cells lacking a member of this protein family. For these studies, we have used a conditional Stu2p depletion strain expressing alpha-tubulin fused to green fluorescent protein. Depletion of Stu2p leads to fewer and less dynamic cytoplasmic microtubules in both G1 and preanaphase cells. The reduction in cytoplasmic microtubule dynamics is due primarily to decreases in both the catastrophe and rescue frequencies and an increase in the fraction of time microtubules spend pausing. These changes have significant consequences for the cell because they impede the ability of cytoplasmic microtubules to orient the spindle. In addition, recovery of fluorescence after photobleaching indicates that kinetochore microtubules are no longer dynamic in the absence of Stu2p. This deficiency is correlated with a failure to properly align chromosomes at metaphase. Overall, we provide evidence that Stu2p promotes the dynamics of microtubule plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.  相似文献   

11.
12.
NuMA (Nuclear protein that associates with the Mitotic Apparatus) is a 235-kD intranuclear protein that accumulates at the pericentrosomal region of the mitotic spindle in vertebrate cells. To determine if NuMA plays an active role in organizing the microtubules at the polar region of the mitotic spindle, we have developed a cell free system for the assembly of mitotic asters derived from synchronized cultured cells. Mitotic asters assembled in this extract are composed of microtubules arranged in a radial array that contain NuMA concentrated at the central core. The organization of microtubules into asters in this cell free system is dependent on NuMA because immunodepletion of NuMA from the extract results in randomly dispersed microtubules instead of organized mitotic asters, and addition of the purified recombinant NuMA protein to the NuMA-depleted extract fully reconstitutes the organization of the microtubules into mitotic asters. Furthermore, we show that NuMA is phosphorylated upon mitotic aster assembly and that NuMA is only required in the late stages of aster assembly in this cell free system consistent with the temporal accumulation of NuMA at the polar ends of the mitotic spindle in vivo. These results, in combination with the phenotype observed in vivo after the prevention of NuMA from targeting onto the mitotic spindle by antibody microinjection, suggest that NuMA plays a functional role in the organization of the microtubules of the mitotic spindle.  相似文献   

13.
14.
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.  相似文献   

15.
16.
The display of microtubules in transformed cells.   总被引:48,自引:0,他引:48  
M Osborn  K Weber 《Cell》1977,12(3):561-571
Monospecific tubulin antibodies have been used in indirect immunofluorescence microscopy on a variety of well characterized, transformed cell lines grown in tissue culture. Networks of colcemid-sensitive fibers are seen in SV40-transformed 3T3 cells, SV40-transformed rat embryo cells, HeLa cells and other transformed cell lines. In each case, greater than 90% of the cells contain visible microtubular networks, and where individual microtubules can be distinguished, they run for long distances. Documentation of these metworks is more difficult in transformed than in normal cells, because transformed cells are in general more rounded and have less well spread cytoplasm. In addition, the microtubular networks can be readily visualized in "cytoskeletons" of both normal and transformed cells, obtained by treatment of cells with nonionic detergents in a buffer which stabilizes microtubules in vitro. Addition of calcium to this buffer results in in situ fragmentation and destruction of the microtubular network. In view of these results, we conclude that transformed cells contain significant numbers of microtubules, and that in transformed cells, as in normal cells, microtubules are arranged in networks.  相似文献   

17.
Pelengaris S  Khan M  Evan GI 《Cell》2002,109(3):321-334
To explore the role of c-Myc in carcinogenesis, we have developed a reversible transgenic model of pancreatic beta cell oncogenesis using a switchable form of the c-Myc protein. Activation of c-Myc in adult, mature beta cells induces uniform beta cell proliferation but is accompanied by overwhelming apoptosis that rapidly erodes beta cell mass. Thus, the oncogenic potential of c-Myc in beta cells is masked by apoptosis. Upon suppression of c-Myc-induced beta cell apoptosis by coexpression of Bcl-x(L), c-Myc triggers rapid and uniform progression into angiogenic, invasive tumors. Subsequent c-Myc deactivation induces rapid regression associated with vascular degeneration and beta cell apoptosis. Our data indicate that highly complex neoplastic lesions can be both induced and maintained in vivo by a simple combination of two interlocking molecular lesions.  相似文献   

18.
Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.  相似文献   

19.
20.
Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号