首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

2.
Comparisons were made of the histochemical characteristics of skeletal muscle from 10 animal species. The basic comparison was made from the staining patterns for the myofibrillar actomyosin ATPase produced by preincubation of fresh frozen cross-sections of muscle at alkaline pH (10.30) or acid pH (4.60) with those produced by preincubation in media containing Cu2+ at alkaline pH (10.30), near neutral pH (7.40), or acid pH (4.60). Muscle sections were also stained for reduced nicotinamide adenine dinucleotide tetrazolium reductase and alpha-glycerophosphate dehydrogenase to provide an indication of the relative oxidative and glycolytic capacity of the different fiber types. Type II fibers in mixed fibered muscles were either very sensitive, moderately sensitive, or relatively insensitive to inactivation of the myofibrillar actomyosin ATPase after acid preincubation. These fibers were identified as type IIA1, IIA2, and IIA3, respectively. The myofibrillar actomyosin ATPase of the type I fibers of these muscles, with the exception of those in mouse muscle, was activated by pretreatment with acid. A separation of animal species was possible based on the stability of the IIA1 fibers to inclusion of Cu2+ in the preincubation medium. For one group of animals (rat, mouse, monkey, man, dog, rabbit, and cow), a reciprocal relationship existed between lability to acid and stability to Cu2+ for type IIA1 and IIA3 fibers, respectively. For the second group of animals (horse, ass, and cat) there was a parallel relationship between lability or stability of the type IIA1 and IIA3 fibers to pretreatment with either acid or Cu2+.  相似文献   

3.
Summary Comparisons were made of the histochemical characteristics of skeletal muscle from 10 animal species. The basic comparison was made from the staining patterns for the myofibrillar actomyosin ATPase produced by preincubation of fresh frozen cross-sections of muscle at alkaline pH (10.30) or acid pH (4.60) with those produced by preincubation in media containing Cu2+ at alkaline pH (10.30), near neutral pH (7.40), or acid pH (4.60). Muscle sections were also stained for reduced nicotinamide adenine dinucleotide tetrazolium reductase and alpha-glycerophosphate dehydrogenase to provide an indication of the relative oxidative and glycolytic capacity of the different fiber types. Type II fibers in mixed fibered muscles were either very sensitive, moderately sensitive, or relatively insensitive to inactivation of the myofibrillar actomyosin ATPase after acid preincubation. These fibers were identified as type IIA1, IIA2, and IIA3, respectively. The myofibrillar actomyosin ATPase of the type I fibers of these muscles, with the exception of those in mouse muscle, was activated by pretreatment with acid. A separation of animal species was possible based on the stability of the IIA1 fibers to inclusion of Cu2+ in the preincubation medium. For one group of animals (rat, mouse, monkey, man, dog, rabbit, and cow), a reciprocal relationship existed between lability to acid and stability to Cu2+ for type IIA1 and IIA3 fibers, respectively. For the second group of animals (horse, ass, and cat) there was a parallel relationship between lability or stability of the type IIA1 and IIA3 fibers to pretreatment with either acid or Cu2+ Visiting scholar from the Laboratory of Biomechanics and Physiology, College of General Education, Yamaguchi University, Yamaguchi 753, JapanSupported in part by Washington State Equine Research Program grant #105 3925 0042  相似文献   

4.
A method is described for identifying fiber types of skeletal muscle from several mammalian species on the basis of the sequential inactivation of myofibrillar actomyosin ATPase during acid preincubation. When this method is used in combination with the standard alkaline preincubation at least 5 types of fibers can be identified. Of these, 2 are type I fibers with those of the slow twitch soleus muscle being different from those that exist in mixed muscles. The 3 subtypes of type II fibers exist independent of their metabolic properties. The need for careful standardization of histochemical methods for the visualization of myofibrillar actomyosin ATPase and the implication of the existence of different fiber types in apparently homogeneous muscle for the preparation of antibodies used for immunocytochemical methods of fiber identification are discussed.  相似文献   

5.
6.
In the normal and randomly reinnervated plantaris muscle of rat staining for succinic dehydrogenase (SDH) activity differentiates three fiber types (A, B and C), staining for myofibrillar adenosine triphosphatase (ATPase) differentiates three fiber types (alpha, beta and alpha beta). Here we present our finding type A corresponds to alpha beta fibers, B to beta or alpha beta, C to alpha or alpha beta. In normal soleus muscle both classifications were found to be compatible and B fibers correspond to beta and C to alpha fibers. An exception is the small percent of alpha beta fibers which correspond to B type. In randomly reinnervated soleus muscle changes in ATPase activity are not followed by changes in SDH staining and B fibers correspond to alpha, beta or alpha beta types.  相似文献   

7.
 Myofibrillar ATPase (mATPase), succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (GPD) activities and cross-sectional area (CSA) were measured in fibres of rat medial gastrocnemius muscle using quantitative histochemistry. The same fibres were typed immunohistochemically using monoclonal antibodies specific to selected myosin heavy chain (MHC) isoforms. The values of mATPase, SDH, GPD and CSA formed a continuum, but significant differences in mean values were observed among fibre types of presumed homogeneous MHC content. Type I fibres had the lowest mATPase activity, followed in rank order by type IIA<type IID/X<type IIB. Type IIA fibres had the highest SDH activity, followed in rank order by type IID/X>type I>type IIB. The mean GPD activity was consistently ranked according to fibre type such that type IIB>type IID/X >type IIA>type I. Type IIA fibres were the smallest, type IIB fibres were the largest and types I and IID/X were of intermediate size. Significant interrelationships between mATPase, SDH, GPD and CSA values were found on a fibre-to-fibre basis. Consequently, discrimination of fibres according to their MHC content was possible on the basis of their mATPase, SDH, GPD and CSA profiles. These intrafibre interrelationships suggest that the MHC isoform is associated with phenotypic differences in contractile, metabolic and size properties of muscle fibre types. Accepted: 30 November 1998  相似文献   

8.
9.
The activity of myofibrillar ATPase declined with length in the five species examined ( Merlanogrummus aeglefinis L., Merrluccius merluccius L., Physis blennoides Brunnich, Pleuronectes platessa L. and Merlangius merlangus L.). This decline was related to a decrease in the in vitro muscle contraction rate and appeared to be a scale rather than an age effect. Actomyosin was extracted from Merlangius merlangus L. to investigate the length related changes in the myofibrillar protein.  相似文献   

10.
11.
12.
An inhibition reactivation technique was used for histochemical staining of human skeletal muscle sections. Myofibrillar ATPase activity was inhibited by sodium hydroxymercuribenzoate (2.5 mM in 0.1 M Tris-HCl buffer, pH 7.2-7.5, 30 min) and successively reactivated by cysteine which was added to incubation solution (10 mM cysteine-HCl, 2.5 mM ATP-disodium salt, 50 mM potassium chloride and 27 mM calcium chloride in barbital buffer, pH 9.4, 35 min at 37 C). This technique allows the distinction of three fiber categories with different staining intensities in single cross-section. Dark, intermediate and light fibers correspond to IIB, I, and IIA types, respectively. Storage of air dried sections in the freezer at -20 C for one month had no influence on staining characteristics.  相似文献   

13.
Heat-treatment of natural actomyosin at low ionic strength in the absence of substrate results in substantial augmentation of Mg-ATPase, and minor increase of Ca-ATPase and decrease of EDTA-ATPase. Changes in Steady-state activity persist despite decrease of temperature. The effect appears to involve a thermally induced transition to a stable potentiated state for natural actomyosin. The phenomenon requires interaction between actin and myosin during heat-treatment; however, the presence of troponin and tropomyosin is needed for potentiation to be fully manifest. Thermal potentiation significantly modifies the Arrhenius behavior of actomyosin ATPase, and the augmented catalytic rate reflects a large increase of activation entropy.  相似文献   

14.
15.
Incubation of myosin with myopathic hamster protease results in substantial (more than 80%) removal of light chain 2 (LC2) with limited breakdown of the heavy chains. LC2-deficient myosin, purified by ion exchange chromatography, migrates as a single, monodisperse boundary in the analytical ultracentrifuge. The Ca2+- and EDTA-activated ATPases of LC2-deficient myosin are similar to those of the control and LC2-recombined myosins indicating that no denaturation occurred in its preparation. Double reciprocal plots for LC2-deficient, control, and LC2-recombined myosins reveal a biphasic behavior i.e. at actin concentrations above 11 microM, there is a sharp break in the 1/V versus 1/[actin] plots for all samples. The Vm values for LC2-deficient myosin are 50% lower (at low actin, Vm = 3.0 s-1, and at high actin, Vm = 4.2 s-1) than those for control myosin (Vm = 5.3 s-1 at low actin and 8.3 s-1 at high actin). Readdition of LC2 to LC2-deficient myosin restores the actin-activated ATPase to control levels. Electron microscopy of shadow cast preparations reveals a subtle difference between LC2-deficient myosin, and control or recombined myosin. In control and recombined myosins, S1 heads appear "pear"-shaped, whereas in LC2-deficient myosin, the S1 heads are rounder and display a "thinning" of mass in the "neck" region, suggesting that LC2 binds at the S1/S2 junction. Furthermore, removal of LC2 apparently influences the assembly of myosin into minifilaments, as revealed to a certain degree, by an increase in the width of the bare zone, accompanied by a decrease in the stability of these minifilaments.  相似文献   

16.
Epinephrine was used to activate the heparin non-releasable lipoprotein lipase (LPL) in the 3 skeletal muscle fiber types of the perfused rat hindlimb. Following a 9 min washout of the capillary-bound lipoprotein lipase, the hindquarter of the rat was perfused with a buffer containing 10 nM of epinephrine. Activity of the residual LPL in soleus, red vastus lateralis, and white vastus lateralis muscles increased 75%, 96%, and 102% respectively, following epinephrine perfusion. These results suggest that skeletal muscle LPL is under hormonal control possibly through protein phosphorylation by cyclic AMP dependent protein kinase.  相似文献   

17.
18.
1. Purealin, a novel bioactive principle of a sea sponge Psammaplysilla purea, activated the superprecipitation of myosin B (natural actomyosin) from rabbit skeletal muscle. The maximum change in the turbidity increased with increasing purealin concentrations and was three times the control value in the presence of 50 microM purealin. 2. The ATPase activity of myosin B was also elevated to 160% of the control value by 10 microM purealin. On the other hand, purealin inhibited the myosin ATPase in the presence of 10 mM CaCl2 and 0.5 M KCl (Ca2+-ATPase), and the concentration for the half inhibition was 4 microM. 3. On the other hand, purealin activated the myosin ATPase in the presence of 5 mM EDTA and 0.5 M KCl (EDTA-ATPase). The maximum activation by 10 microM purealin was 160% of the control value. 4. Furthermore, similar results concerning the modification of ATPase activities by purealin were obtained in myosin subfragment-1 instead of myosin. 5. These results suggest that purealin activates the superprecipitation of myosin B by affecting the myosin heads directly. It is also an interesting observation that there is a correlation between the activities of the myosin EDTA-ATPase and actomyosin ATPase of myosin B.  相似文献   

19.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

20.
Total creatine (Cr(total) = phosphocreatine + creatine) concentrations differ substantially among mammalian skeletal muscle. Because the primary means to add Cr(total) to muscle is uptake of creatine through the sodium-dependent creatine transporter (CrT), differences in creatine uptake and CrT expression could account for the variations in [Cr(total)] among muscle fiber types. To test this hypothesis, hindlimbs of adult rats were perfused with 0.05-1 mM [(14)C]creatine for up to 90 min. Creatine uptake rates at 1 mM creatine were greatest in the soleus (140 +/- 8.8 nmol x h(-1) x g(-1)), less in the red gastrocnemius (117 +/- 8.3), and least in the white gastrocnemius (97 +/- 10.7). These rates were unaltered by time, insulin concentration, or increased perfusate sodium concentration. Conversely, creatine uptake rates were correspondingly decreased among fiber types by lower creatine and sodium concentrations. The CrT protein content by Western blot analysis was similarly greatest in the soleus, less in the red gastrocnemius, and least in the white gastrocnemius, whereas CrT mRNA was not different. Creatine uptake rates differ among skeletal muscle fiber sections in a manner reasonably assigned to the 58-kDa band of the CrT. Furthermore, creatine uptake rates scale inversely with creatine content, with the lowest uptake rate in the fiber type with the highest Cr(total) and vice versa. This suggests that the creatine pool fractional turnover rate is not common across muscle phenotypes and, therefore, is differentially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号