共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Patrick Gonzalez Ronald P. Neilson James M. Lenihan Raymond J. Drapek 《Global Ecology and Biogeography》2010,19(6):755-768
Aim Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well‐being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We explore potential methods to identify areas vulnerable to vegetation shifts and potential refugia. Location Global vegetation biomes. Methods We examined nine combinations of three sets of potential indicators of the vulnerability of ecosystems to biome change: (1) observed changes of 20th‐century climate, (2) projected 21st‐century vegetation changes using the MC1 dynamic global vegetation model under three Intergovernmental Panel on Climate Change (IPCC) emissions scenarios, and (3) overlap of results from (1) and (2). Estimating probability density functions for climate observations and confidence levels for vegetation projections, we classified areas into vulnerability classes based on IPCC treatment of uncertainty. Results One‐tenth to one‐half of global land may be highly (confidence 0.80–0.95) to very highly (confidence ≥ 0.95) vulnerable. Temperate mixed forest, boreal conifer and tundra and alpine biomes show the highest vulnerability, often due to potential changes in wildfire. Tropical evergreen broadleaf forest and desert biomes show the lowest vulnerability. Main conclusions Spatial analyses of observed climate and projected vegetation indicate widespread vulnerability of ecosystems to biome change. A mismatch between vulnerability patterns and the geographic priorities of natural resource organizations suggests the need to adapt management plans. Approximately a billion people live in the areas classified as vulnerable. 相似文献
3.
4.
Michela Mariani Michael‐Shawn Fletcher Simon Haberle Hahjung Chin Atun Zawadzki Geraldine Jacobsen 《Global Change Biology》2019,25(6):2030-2042
Climate change is affecting the distribution of species and the functioning of ecosystems. For species that are slow growing and poorly dispersed, climate change can force a lag between the distributions of species and the geographic distributions of their climatic envelopes, exposing species to the risk of extinction. Climate also governs the resilience of species and ecosystems to disturbance, such as wildfire. Here we use species distribution modelling and palaeoecology to assess and test the impact of vegetation–climate disequilibrium on the resilience of an endangered fire‐sensitive rainforest community to fires. First, we modelled the probability of occurrence of Athrotaxis spp. and Nothofagus gunnii rainforest in Tasmania (hereon “montane rainforest”) as a function of climate. We then analysed three pollen and charcoal records spanning the last 7,500 cal year BP from within both high (n = 1) and low (n = 2) probability of occurrence areas. Our study indicates that climatic change between 3,000 and 4,000 cal year bp induced a disequilibrium between montane rainforests and climate that drove a loss of resilience of these communities. Current and future climate change are likely to shift the geographic distribution of the climatic envelopes of this plant community further, suggesting that current high‐resilience locations will face a reduction in resilience. Coupled with the forecast of increasing fire activity in southern temperate regions, this heralds a significant threat to this and other slow growing, poorly dispersed and fire sensitive forest systems that are common in the southern mid to high latitudes. 相似文献
5.
Aim The main goal of this study was to investigate how climate and human activities may have influenced ecotonal areas of disjoint savannas within Brazilian Amazonia. Location Eastern Brazilian Amazonia, Amapá State. Methods The fossil pollen and charcoal records of two lakes in Amapá (Marcio and Tapera) were used to provide a Holocene palaeoecological history of eastern Amazonian savannas. Detrended correspondence analysis was used to enhance the patterns of sample distribution along the sediment core. Results Even though sedimentary hiatuses were recognized in the sediment cores from both lakes, a marked change in vegetation from closed forests with swamp elements to open flooded savanna at c. 5000 yr bp was evident from the pollen record. Charcoal analysis revealed a pattern of increased accumulation of charred particles coincident with the establishment of savanna vegetation, suggesting higher fire frequency near the lakes. Because the timing of the sedimentary hiatus overlapped with the highest Holocene sea level, which would have increased the local water table preventing the lakes from drying out, we infer that both lakes used to depend heavily on flood waters, and the sedimentary gap was caused by reduced discharge from the Amazon River, due to a dry period in the Andes, when precipitation levels markedly decreased between 8000 and 5000 yr bp . The lack of Andean pollen (probably river transported) in the sediment record after this event and the existence of similar records near the study site make this interpretation more appealing. The resumption of sedimentation in Lake Marcio, contemporaneous with falling sea level and increasingly wet conditions in the Andes after 5000 yr bp , indicates that Holocene sea‐level variation did not play an important role in maintaining lake levels. Main conclusions The study site recorded long‐term occupation by pre‐Columbian peoples. However, it is still unclear whether these disjoint savannas have an anthropogenic origin. Even though locally dry environmental conditions were inferred from both records, there is no evidence of a mid‐Holocene dry climate in eastern Amazonia. Instead, the Amapá record indicates a connection between Andean climate and eastern Amazonia, demonstrating the need for a better understanding of the impacts and magnitude of climate changes. 相似文献
6.
RUTH M. DOHERTY STEPHEN SITCH BENJAMIN SMITH SIMON L. LEWIS PHILIP K. THORNTON 《Global Change Biology》2010,16(2):617-640
We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual‐mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present‐day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18–36%) and total carbon storage (3–13%) by 2080–2099 compared with the present‐day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present‐day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases. 相似文献
7.
Models of global change must come to incorporate changes in terrestrial vegetation. Here we choose a 1- year meshing (coupling) period to link a global climate model to a well-known biophysical representation of the continental surface by means of eleven vegetation functional types. This coupled model is used to answer two questions: Can a ‘standard’ GCM ‘cope' with sudden switches in continental characteristics?’ and Does the climate ‘care’ about the changing underlying vegetation? We find affirmative answers to both questions. Our results also suggest that those content to generate vegetation post facto from climate output have incomplete results. 相似文献
8.
Nitin Chaudhary Sebastian Westermann Shubhangi Lamba Narasinha Shurpali A. Britta K. Sannel Guy Schurgers Paul A. Miller Benjamin Smith 《Global Change Biology》2020,26(7):4119-4133
The majority of northern peatlands were initiated during the Holocene. Owing to their mass imbalance, they have sequestered huge amounts of carbon in terrestrial ecosystems. Although recent syntheses have filled some knowledge gaps, the extent and remoteness of many peatlands pose challenges to developing reliable regional carbon accumulation estimates from observations. In this work, we employed an individual‐ and patch‐based dynamic global vegetation model (LPJ‐GUESS) with peatland and permafrost functionality to quantify long‐term carbon accumulation rates in northern peatlands and to assess the effects of historical and projected future climate change on peatland carbon balance. We combined published datasets of peat basal age to form an up‐to‐date peat inception surface for the pan‐Arctic region which we then used to constrain the model. We divided our analysis into two parts, with a focus both on the carbon accumulation changes detected within the observed peatland boundary and at pan‐Arctic scale under two contrasting warming scenarios (representative concentration pathway—RCP8.5 and RCP2.6). We found that peatlands continue to act as carbon sinks under both warming scenarios, but their sink capacity will be substantially reduced under the high‐warming (RCP8.5) scenario after 2050. Areas where peat production was initially hampered by permafrost and low productivity were found to accumulate more carbon because of the initial warming and moisture‐rich environment due to permafrost thaw, higher precipitation and elevated CO2 levels. On the other hand, we project that areas which will experience reduced precipitation rates and those without permafrost will lose more carbon in the near future, particularly peatlands located in the European region and between 45 and 55°N latitude. Overall, we found that rapid global warming could reduce the carbon sink capacity of the northern peatlands in the coming decades. 相似文献
9.
10.
Loren P. Albert Natalia Restrepo‐Coupe Marielle N. Smith Jin Wu Cecilia Chavana‐Bryant Neill Prohaska Tyeen C. Taylor Giordane A. Martins Philippe Ciais Jiafu Mao M. Altaf Arain Wei Li Xiaoying Shi Daniel M. Ricciuto Travis E. Huxman Sean M. McMahon Scott R. Saleska 《Global Change Biology》2019,25(11):3591-3608
Plant phenology—the timing of cyclic or recurrent biological events in plants—offers insight into the ecology, evolution, and seasonality of plant‐mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season‐initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are “cryptic”—that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models. 相似文献
11.
Natalia Restrepo‐Coupe Naomi M. Levine Bradley O. Christoffersen Loren P. Albert Jin Wu Marcos H. Costa David Galbraith Hewlley Imbuzeiro Giordane Martins Alessandro C. da Araujo Yadvinder S. Malhi Xubin Zeng Paul Moorcroft Scott R. Saleska 《Global Change Biology》2017,23(1):191-208
To predict forest response to long‐term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short‐term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry‐season intensities and lengths, to determine how well four state‐of‐the‐art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry‐season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry‐season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry‐season GPP resulted from a combination of internal biological (leaf‐flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry‐season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light‐harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf‐level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments. 相似文献
12.
Aim Evaluate the hypothesis that nine disjunct vascular plant species along the eastern slopes of the Rocky Mountains and in the Peace River District of west‐central Alberta represent remnants of more southerly vegetation that occupied these areas during the Holocene Hypsithermal (9000–6000 yr bp ). Alternatively, these plants represent populations that became established because of independent chance dispersal events. Location This study focuses on the area east of the Rocky Mountain Continental Divide in the Province of Alberta and the State of Montana in western Canada and USA, respectively. Methods Disjunct species were identified and their distributions mapped based on a review of occurrence maps and records, botanical floras and checklists, herbaria specimens, ecological and botanical studies, and field surveys of selected species. A disjunct species was defined as a plant population separated from its next nearest occurrence by a distance of > 300 km. Evaluation of the hypothesis was based on a review of published and unpublished pollen stratigraphy and palaeoecological studies. The potential geographical distribution of Hypsithermal vegetation was based on modern regional‐based ecosystem mapping and associated monthly temperature summaries as well as future climatic warming models. Results The hypothesis was compatible with Holocene pollen stratigraphy, Hypsithermal permafrost and fen occurrence, and palaeosol phytolith analyses; and future global climatic warming models. Modelled regional Hypsithermal vegetation based on a 1 °C increase in July temperatures relative to current conditions, indicated that much of the boreal forest zone in Alberta could have been grassland, which would explain the occurrence of Prairie species in the Peace River District. This amount of latitudinal vegetation shift (6.5°) was similar to an earlier Hypsithermal permafrost zone location study. An equivalent shift in vegetation along the eastern Cordillera would have placed south‐western Montana‐like vegetation and species such as Boykinia heucheriformis (Rydb.) Rosend. and Saxifraga odontoloma Piper within the northern half of the Rocky Mountains and foothills in Alberta, which represents the location of modern‐day disjunct populations of these species. Main conclusions Warmer and drier climatic conditions during the Holocene Hypsithermal resulted in the northward displacement of vegetation zones relative to their current distribution patterns. Most of Alberta was probably dominated by grasslands during this period, except the Rocky Mountains and northern highlands. Modern‐day species disjunctions within the Rocky Mountains and Peace River District as well as more northerly areas such as the Yukon Territory occurred when the vegetation receded southward in response to climatic cooling after the Hypsithermal. Wind dispersal was considered an unlikely possibility to explain the occurrence of the disjunct species, as most of the plants lack morphological adaptations for long distance transport and the prevailing winds were from west to east rather than south to north. However, consumption and transport of seeds by northward migrating birds could not be excluded as a possibility. 相似文献
13.
Juan M. Rubiales Ignacio García-Amorena Mar Génova Fernando Gómez Manzaneque 《Review of Palaeobotany and Palynology》2010,162(3):476-491
The role of pinewoods as native forests in the Iberian Mountains, and their long-term dynamics during the last interglacial, has been intensely debated among geobotanists. This debate has resulted in several different hypotheses regarding the interpretation of the present day landscape.Recent research on Late Quaternary palaeoecological records has enabled long-term patterns of forest dynamics in the main ranges of the Iberian Peninsula to be tested, and the parallel analysis of micro- (mainly pollen) and macroremains (woods, charcoals, fruits, seeds and leaves) has enhanced the resolution of these palaeobiological records. Additional historical information has allowed a complete overview of the past vegetal landscapes to be obtained.This work summarises the available data for Iberian mountain pines during the Lateglacial and the Holocene, focussing on the mountain regions in scenarios of absence or dominance. Based on this overview, life history traits and patterns of plant dynamics during the Holocene are discussed and compared with present landscapes.In the long term, Pinus does not always respond as a serial element in succession dynamics, not even in very favourable environments for hardwoods. Processes such as incumbency or resilience, and features such as frugality and their ability to disperse, affect the persistence of pines to the present day. This is exemplified for continental mountain areas, in which the absence of anthropogenic activities could have determined the wider coverage of pinewoods seen today. 相似文献
14.
15.
Global change research needs data sets describing past states of the Earth system. Vegetation distributions for specified 'time slices' (with known forcings, such as changes in insolation patterns due to the Earth's orbital variations, changes in the extent of ice-sheets, and changes in atmospheric trace-gas composition) should provide a benchmark for coupled climate-biosphere models. Pollen and macrofossil records from dated sediments give spatially extensive coverage of data on vegetation distribution changes. Applications of such data have been delayed by the lack of a global synthesis. The BIOME 6000 project of IGBP aims at a synthesis for 6000 years bp. Success depends on community-wide participation for data compilation and quality assurance, and on a robust methodology for assigning palaeorecords to biomes. In the method summarized here, taxa are assigned to one or more plant functional types (PFTs) and biomes reconstructed using PFT-based definitions. By involving regional experts in PFT assignments, one can combine data from different floras without compromising global consistency in biome assignments. This article introduces a series of articles that substantially extend the BIOME 6000 data set. The list of PFTs and the reconstruction procedure itself are evolving. Some compromises (for example, restricted taxon lists in some regions) limit the precision of biome assignments and will become obsolete as primary data are put into community data bases. This trend will facilitate biome mapping for other time slices. Co-evolution of climate-biosphere modelling and palaeodata synthesis and analysis will continue. 相似文献
16.
17.
Gordon B. Bonan Samuel Levis Stephen Sitch† Mariana Vertenstein Keith W. Oleson 《Global Change Biology》2003,9(11):1543-1566
Changes in vegetation structure and biogeography due to climate change feedback to alter climate by changing fluxes of energy, moisture, and momentum between land and atmosphere. While the current class of land process models used with climate models parameterizes these fluxes in detail, these models prescribe surface vegetation and leaf area from data sets. In this paper, we describe an approach in which ecological concepts from a global vegetation dynamics model are added to the land component of a climate model to grow plants interactively. The vegetation dynamics model is the Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. The land model is the National Center for Atmospheric Research (NCAR) Land Surface Model (LSM). Vegetation is defined in terms of plant functional types. Each plant functional type is represented by an individual plant with the average biomass, crown area, height, and stem diameter (trees only) of its population, by the number of individuals in the population, and by the fractional cover in the grid cell. Three time‐scales (minutes, days, and years) govern the processes. Energy fluxes, the hydrologic cycle, and carbon assimilation, core processes in LSM, occur at a 20 min time step. Instantaneous net assimilated carbon is accumulated annually to update vegetation once a year. This is carried out with the addition of establishment, resource competition, growth, mortality, and fire parameterizations from LPJ. The leaf area index is updated daily based on prevailing environmental conditions, but the maximum value depends on the annual vegetation dynamics. The coupling approach is successful. The model simulates global biogeography, net primary production, and dynamics of tundra, boreal forest, northern hardwood forest, tropical rainforest, and savanna ecosystems, which are consistent with observations. This suggests that the model can be used with a climate model to study biogeophysical feedbacks in the climate system related to vegetation dynamics. 相似文献
18.
Yuan Wang Junjie Liu Paul O. Wennberg Liyin He Damien Bonal Philipp Köhler Christian Frankenberg Stephen Sitch Pierre Friedlingstein 《Global Change Biology》2023,29(17):4811-4825
Tropical forests play a pivotal role in regulating the global carbon cycle. However, the response of these forests to changes in absorbed solar energy and water supply under the changing climate is highly uncertain. Three-year (2018–2021) spaceborne high-resolution measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) provide a new opportunity to study the response of gross primary production (GPP) and more broadly tropical forest carbon dynamics to differences in climate. SIF has been shown to be a good proxy for GPP on monthly and regional scales. Combining tropical climate reanalysis records and other contemporary satellite products, we find that on the seasonal timescale, the dependence of GPP on climate variables is highly heterogeneous. Following the principal component analyses and correlation comparisons, two regimes are identified: water limited and energy limited. GPP variations over tropical Africa are more correlated with water-related factors such as vapor pressure deficit (VPD) and soil moisture, while in tropical Southeast Asia, GPP is more correlated with energy-related factors such as photosynthetically active radiation (PAR) and surface temperature. Amazonia is itself heterogeneous: with an energy-limited regime in the north and water-limited regime in the south. The correlations of GPP with climate variables are supported by other observation-based products, such as Orbiting Carbon Observatory-2 (OCO2) SIF and FluxSat GPP. In each tropical continent, the coupling between SIF and VPD increases with the mean VPD. Even on the interannual timescale, the correlation of GPP with VPD is still discernable, but the sensitivity is smaller than the intra-annual correlation. By and large, the dynamic global vegetation models in the TRENDY v8 project do not capture the high GPP seasonal sensitivity to VPD in dry tropics. The complex interactions between carbon and water cycles in the tropics illustrated in this study and the poor representation of this coupling in the current suite of vegetation models suggest that projections of future changes in carbon dynamics based on these models may not be robust. 相似文献
19.
Aim Using a new approach to analyse fossil pollen data, we investigate temporal and spatial patterns in Populus ( poplar, cottonwood, aspen) from the Late Glacial to the present at regional to continental scales.
Location North America.
Methods We extracted data on the timing and magnitude of the maximum value of Populus pollen from each pollen diagram in the North American Pollen Database (NAPD). The information was plotted in histograms of 150-year bins to identify times when Populus was abundant on the landscape. We also mapped the maximum values to identify spatial patterns and their causes.
Results Our analyses show that there have been several periods since the Late Glacial when Populus was abundant on the landscape: (1) from 12.35 to 12.65 kyr bp , in eastern North America, largely in response to the opening of the forest following the onset of the Younger Dryas; (2) from 10.85 to 11.75 kyr bp , following the termination of the Younger Dryas; and (3) during the last 150 years, as land was cleared for agricultural use, especially in the midwestern United States.
Main conclusion Since the Late Glacial, changes in the abundance of Populus were caused more by the effects of abrupt climate change on its major competitors, rather than the direct effects of climate on Populus itself. 相似文献
Location North America.
Methods We extracted data on the timing and magnitude of the maximum value of Populus pollen from each pollen diagram in the North American Pollen Database (NAPD). The information was plotted in histograms of 150-year bins to identify times when Populus was abundant on the landscape. We also mapped the maximum values to identify spatial patterns and their causes.
Results Our analyses show that there have been several periods since the Late Glacial when Populus was abundant on the landscape: (1) from 12.35 to 12.65 kyr bp , in eastern North America, largely in response to the opening of the forest following the onset of the Younger Dryas; (2) from 10.85 to 11.75 kyr bp , following the termination of the Younger Dryas; and (3) during the last 150 years, as land was cleared for agricultural use, especially in the midwestern United States.
Main conclusion Since the Late Glacial, changes in the abundance of Populus were caused more by the effects of abrupt climate change on its major competitors, rather than the direct effects of climate on Populus itself. 相似文献