首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Endo  K Tsurugi  H Franz 《FEBS letters》1988,231(2):378-380
The site of action of the A-chain of mistletoe lectin (ML-A) from Viscum album on eukaryotic ribosomes was studied. Treatment of rat liver ribosomes with ML-A, followed by treatment of the isolated rRNA with aniline, caused the release of a fragment with about 450 nucleotides from 28 S rRNA. Further analysis of nucleotide sequences of this fragment revealed that the aniline-sensitive site of phosphodiester bond was between positions A-4324 and G-4325 in 28 S rRNA. These results indicate that ML-A inactivates the ribosomes by cleaving a N-glycosidic bond at A-4324 of 28 S rRNA in the ribosomes as ricin A-chain does.  相似文献   

2.
The pre-rRNA and rRNA components of rat and mouse liver nucleolar RNA were analysed. It was shown that upon denaturation, part of the 32 S pre-rRNA is converted into 28 S rRNA and 12 S RNA. The 12 S RNA from mouse (Mr, 0.36 X 10(6)) is larger than the one from rat (Mr, 0.32 X 10(6). The 12 S RNA chain is intact and resists denaturation treatment. The non-covalent binding of this RNA with nucleolar 28 S rRNA is stronger than that of 5.8 S rRNA with 28 S rRNA. Hybridization with a rat internal-transcribed spacer rDNA fragment identifies 12 S RNA as corresponding to the 5'-end non-conserved segment of 32 S pre-rRNA, including 5.8 S rRNA. The significance of the formation of a 12 S precursor to 5.8 S rRNA in the biogenesis of ribosomes in mammalian cells is discussed.  相似文献   

3.
Pepocin, isolated from Cucurbita pepo, is a ribosome-inactivating protein (RIP). RIPs site-specifically recognize and depurinate an adenosine at position 4324 in rat 28 S rRNA, rendering the ribosome incapable of interacting with essential elongation factors. Aptamers that target pepocin were isolated from a degenerate RNA pool by in vitro selection. A conserved hairpin motif, quite different from the sequence of the toxin-substrate domain in rat 28 S rRNA, was identified in the aptamer sequences. The aptamers selectively bind to pepocin with dissociation constants between 20 and 30 nM and inhibit the N-glycosidase activity of pepocin on rat liver 28 S rRNA. Competitive binding experiments using aptamer variants suggest that the conserved hairpin region in the anti-pepocin aptamer binds near the catalytic site on pepocin and prevents the interaction of pepocin and 28 S rRNA. Anti-RIP aptamers have potential use in diagnostic systems for the detection of pepocin or could be used as therapy to prevent the action of pepocin in mammalian cells.  相似文献   

4.
We performed basic research into quantifying in situ hybridization (ISH) signals in rat testis, a suitable organ for the quantification because germ cells undergo synchronized development and show stage-specific gene expression. In this model experiment, rRNA was selected as the hybridizable RNA in paraffin sections. Specimens fixed with Bouin's fixative and hybridized with digoxygenin-labeled probes could easily be analyzed quantitatively through "posterization" of the images. The amount of rRNA hybridized with the probe was greatest in early primary spermatocytes, followed by pachytene primary spermatocytes, then diplotene spermatocytes, and finally by secondary spermatocytes and spermatids. The amounts reached low levels in metaphase, anaphase, and telophase of meiotic division and early step 1 spermatids, and then slightly increased during spermiogenesis. ISH rRNA staining was a useful parameter for evaluation of the quantitative analysis of mRNA and the levels of hybridizable RNA in tissue sections.  相似文献   

5.
Y L Chan  J Olvera    I G Wool 《Nucleic acids research》1983,11(22):7819-7831
The nucleotide sequence of a rat 28S rRNA gene was determined. The 28S rRNA encoded in the gene contains 4718 nucleotides and the molecular weight estimated from the sequence is 1.53 x 10(6). The guanine and cytosine content is 67%. The sequence of rat 28S rRNA diverges appreciably from that of Saccharomyces carlsbergensis 26S rRNA (about 50% identity), but more closely approximates that of Xenopus laevis 28S rRNA (about 75% identity). Rat 28S rRNA is larger than the analogous nucleic acids from yeast (3393 nucleotides) and X, laevis (4110 nucleotides) ribosomes. The additional bases are inserted in specific regions and tend to be rich in guanine and cytosine. 5.8S rRNA can interact with 28S rRNA by extensive hydrogen bonding at two sites near the 5' end of the latter.  相似文献   

6.
The RNA N-glycosidase activity of ricin A-chain has been characterized. When rat liver ribosomes were used as substrates, the A-chain cleaved the N-glycosidic bond at A-4324 in 28S rRNA. An apparent Michaelis constant (Km) for the reaction was determined to be 2.6 microM and the turnover number (Kcat) was 1777 min-1. When naked rRNA was the substrate, the A-chain cleaved the same bond in 28S rRNA but at a greatly reduced rate. The Km value was 5.8 microM. The results suggest that the A-chain has a similar affinity for 28S rRNA in both ribosomes and the naked states. When the deproteinized Escherichia coli rRNA was the substrates, ricin A-chain cleaved a N-glycosidic bond at A-2600 in 23S rRNA which corresponds to the ricin-site in 28S rRNA of rat liver ribosomes, while the A-chain has little activity on 23S rRNA in the ribosomes. The results suggest that ricin A-chain acts directly on RNA by recognizing a certain structure in the molecules. Using the secondary structure models for each species of rRNA, we have deduced a loop and stem structure having GAGA in the loop to be a minimum requirement for the substrate of ricin A-chain.  相似文献   

7.
Primary and secondary structure of rat 28 S ribosomal RNA.   总被引:19,自引:9,他引:10       下载免费PDF全文
The primary structure of rat (Rattus norvegicus) 28 S rRNA is determined inferred from the sequence of cloned rDNA fragments. The rat 28 S rRNA contains 4802 nucleotides and has an estimated relative molecular mass (Mr, Na-salt) of 1.66 X 10(6). Several regions of high sequence homology with S. cerevisiae 25 S rRNA are present. These regions can be folded in characteristic base-paired structures homologous to those proposed for Saccharomyces and E. coli. The excess of about 1400 nucleotides in the rat 28 S rRNA (as compared to Saccharomyces 25 S rRNA) is accounted for mainly by the presence of eight distinct G+C-rich segments of different length inserted within the regions of high sequence homology. The G+C content of the four insertions, containing more than 200 nucleotides, is in the range of 78 to 85 percent. All G+C-rich segments appear to form strongly base-paired structures. The two largest G+C-rich segments (about 760 and 560 nucleotides, respectively) are located near the 5'-end and in the middle of the 28 S rRNA molecule. These two segments can be folded into long base-paired structures, corresponding to the ones observed previously by electron microscopy of partly denatured 28 S rRNA molecules.  相似文献   

8.
To devise a more sensitive method for identifying proliferative cells in routinely formalin-fixed, paraffin-embedded tissues, we applied an in situ hybridization (ISH) technique for the detection of histone H3 mRNA in rat gastric mucosa and amplified the signal by a silver intensification method. ISH was performed using a Fluorescein-labelled, single-stranded DNA probe for the human histone H3 gene. To determine the optimal conditions for detecting H3 mRNA in rat gastric mucosa, we tested the effect of changing conditions, such as fixation time and digestion time, by a proteinase before hybridization. Next, the proliferation indices obtained using H3 ISH were compared with those obtained using bromodeoxyuridine (BrdU) immunohistochemistry. In normal rat gastric mucosa, H3 ISH- and BrdU-positive cells were confined to the neck region of both fundic and pyloric mucosa. The two labelling indices were almost the same. In all the serial sections studied, H3 ISH-positive cells were almost always BrdU-positive too. Taken together, these results indicate that the H3 ISH technique is useful for the evaluation of proliferative activity in gastric epithelial cells by virtue of its detection of S-phase cells This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Bona fide apoptosis in rat and human leukemia cells, rat thymocytes, and bovine endothelial cells was accompanied by limited and specific cleavage of polysome-associated and monosome-associated 28S rRNA, with 18S rRNA being spared. Specific 28S rRNA cleavage was observed in all instances of apoptotic death accompanied by internucleosomal DNA fragmentation, with cleavage of 28S rRNA and of DNA being linked temporally. This indicates that 28S rRNA fragmentation may be as general a feature of apoptosis as internucleosomal DNA fragmentation and that concerted specific cleavage of intra- and extranuclear polynucleotides occurs in apoptosis. Apoptosis-associated cleavage sites were mapped to the 28S rRNA divergent domains D2, D6 (endothelial cells), and D8. The D2 cuts occurred in hairpin loop junctions considered to be buried in the intact ribosome, suggesting that this rRNA region becomes a target for RNase attack in apoptotic cells. D8 was cleaved in two exposed UU(U) sequences in bulge loops. Treatment with agents causing necrotic cell death or aging of cell lysates failed to produce any detectable limited D2 cleavage but did produce a more generalized cleavage in the D8 region. Of potential functional interest was the finding that the primary cuts in D2 exactly flanked a 0.3-kb hypervariable subdomain (D2c), allowing excision of the latter. The implication of hypervariable rRNA domains in apoptosis represents the first association of any functional process with these enigmatic parts of the ribosomes.  相似文献   

11.
12.
S-Adenosylmethionine-dependent ribosomal RNA (rRNA) methylase has been purified approx. 90-fold from rat liver nuclei. The partially purified methylase catalyzes the methylation of base and ribose in hypomethylated nuclear rRNA prepared from the regenerating rat liver after treatment with ethionine and adenine. The enzyme has an apparent molecular weight of about 3 x 10(4) and a sedimentation coefficient of 3.0 S. The enzyme is optimally active at pH 9.5 and sensitive to p-chloromercuribenzoate. Thiol-protecting reagents, such as dithiothreitol, are necessary for its activity, and the enzyme requires no divalent cations for its full activity. This enzyme did not efficiently transfer the methyl group to nuclear rRNA from normal rat liver, compared with hypomethylated nuclear rRNA. Methyl groups were mainly incorporated into pre-rRNA larger than 28 S, and the extent of 2'-O-methylation of ribose by this enzyme was greater than that of base methylation in the hypomethylated rRNA. No other nucleic acids, including transfer RNA (tRNA) and microsomal RNA from normal as well as ethionine-treated rat livers, tRNA from Escherichia coli, yeast RNA, and DNA from rat liver and calf thymus, were significantly methylated by this methylase. These results suggest that partially purified rRNA methylase from rat liver nuclei incorporates methyl groups into hypomethylated pre-rRNA from S-adenosylmethionine.  相似文献   

13.
The initial endonuclease cleavage site in 32 S pre-rRNA (precursor to rRNA) is located within the rate rDNA sequence by S1-nuclease protection mapping of purified nucleolar 28 S rRNA and 12 S pre-rRNA. The heterogeneous 5'- and 3'-termini of these rRNA abut and map within two CTC motifs in tSi2 (internal transcribed spacer 2) located at 50-65 and 4-20 base-pairs upstream from the homogeneous 5'-end of the 28 S rRNA gene. These results show that multiple endonuclease cleavages occur at CUC sites in tSi2 to generate 28 S rRNA and 12 S pre-rRNA with heterogeneous 5'- and 3'-termini, respectively. These molecules have to be processed further to yield mature 28 S and 5.8 S rRNA. Thermal-denaturation studies revealed that the base-pairing association in the 12 S pre-rRNA:28 S rRNA complex is markedly stronger than that in the 5.8 S:28 S rRNA complex. The sequence of about one-quarter (1322 base-pairs) of the 5'-part of the rat 28 S rDNA was determined. A computer search reveals the possibility that the cleavage sites in the CUC motifs are single-stranded, flanked by strongly base-paired GC tracts, involving tSi2 and 28 S rRNA sequences. The subsequent nuclease cleavages, generating the termini of mature rRNA, seem to be directed by secondary-structure interactions between 5.8 S and 28 S rRNA segments in pre-rRNA. An analysis for base-pairing among evolutionarily conserved sequences in 32 S pre-rRNA suggests that the cleavages yielding mature 5.8 S and 28 S rRNA are directed by base-pairing between (i) the 3'-terminus of 5.8 S rRNA and the 5'-terminus of 28 S rRNA and (ii) the 5'-terminus of 5.8 S rRNA and internal sequences in domain I of 28 S rRNA. A general model for primary- and secondary-structure interactions in pre-rRNA processing is proposed, and its implications for ribosome biogenesis in eukaryotes are briefly discussed.  相似文献   

14.
The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6X10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5'-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8X10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25X10(6) mol.wt.(41S), a precursor common to both mature rRNA species ; 2.60X10(6)(36S) and 2.15X10(6)(32S) precursors to 28S rRNA; 1.05X10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S leads to 41S leads to 32S+21S leads to 28S+18S rRNA and (ii) 45S leads to 41S leads to 36S+18S leads to 32S leads to 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9X10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.  相似文献   

15.
Inhibition of protein synthesis (up to 95%) in starved rat liver cells after a single injection of a sublethal dose of cycloheximide (0.3 mg per 100 g of body weight) results in degradation of 18S rRNA during the first 3 hours, whereas the 28S rRNA remains unaffected. However, the increase of 28S rRNA degradation products was observed by the 6th and 12th hours. The rapid decay of 18S rRNA is due to the degradation of this RNA in 40S ribosomal subunits. In contrast to 28S rRNA the specific radioactivity of 18S rRNA is increased by the 6th hour. Presumably the synthesis and processing of 18S rRNA impaired during the 1st hour are recovered partially or completely by this time. A molecular mechanism underlying 18S rRNA degradation in 40S ribosomal subunits is proposed.  相似文献   

16.
We characterized a novel 28S rRNA cleavage in cells infected with the murine coronavirus mouse hepatitis virus (MHV). The 28S rRNA cleavage occurred as early as 4 h postinfection (p.i.) in MHV-infected DBT cells, with the appearance of subsequent cleavage products and a decrease in the amount of intact 28S rRNA with increasing times of infection; almost all of the intact 28S rRNA disappeared by 24 h p.i. In contrast, no specific 18S rRNA cleavage was detected in infected cells. MHV-induced 28S rRNA cleavage was detected in all MHV-susceptible cell lines and all MHV strains tested. MHV replication was required for the 28S rRNA cleavage, and mature cytoplasmic 28S rRNA underwent cleavage. In certain combination of cells and viruses, pretreatment of virus-infected cells with interferon activates a cellular endoribonuclease, RNase L, that causes rRNA degradation. No interferon was detected in the inoculum used for MHV infection. Addition of anti-interferon antibody to MHV-infected cells did not inhibit 28S rRNA cleavage. Furthermore, 28S rRNA cleavage occurred in an MHV-infected mouse embryonic fibroblast cell line derived from RNase L knockout mice. Thus, MHV-induced 28S rRNA cleavage was independent of the activation of RNase L. MHV-induced 28S rRNA cleavage was also different from apoptosis-related rRNA degradation, which usually occurs concomitantly with DNA fragmentation. In MHV-infected 17Cl-1 cells, 28S rRNA cleavage preceded DNA fragmentation by at least 18 h. Blockage of apoptosis in MHV-infected 17Cl-1 cells by treatment with a caspase inhibitor did not block 28S rRNA cleavage. Furthermore, MHV-induced 28S rRNA cleavage occurred in MHV-infected DBT cells that do not show apoptotic signs, including activation of caspase-3 and DNA fragmentation. Thus, MHV-induced 28S rRNA cleavage appeared to differ from any rRNA degradation mechanism described previously.  相似文献   

17.
An intracellular bacterium from Ixodes ricinus ticks collected in Italy was characterized by electron microscopy (EM), PCR sequencing of the 16S rRNA gene, molecular phylogenetic analysis, and in situ hybridization (ISH). This bacterium was shown by EM to be present in the cytoplasm, as well as in the mitochondria of ovarian cells. When universal 16S rRNA bacterial primers were used, PCR amplification of ovarian DNA followed by cloning and sequencing resulted in the same sequence being found in each sample. Phylogenetic analysis of this sequence showed that the bacterium from which it was derived, tentatively designated IricES1, is part of a novel clade in the alpha subdivision of the Proteobacterium: ISH and PCR assays of various tissues performed with oligonucleotides specific for the IricES1 16S rRNA showed that IricES1 is restricted to ovarian cells. Based on the results obtained, we inferred that the bacteria seen by EM in ovarian cells are a single type of bacteria, corresponding to IricES1. PCR screening of 166 ticks from various parts of Italy and one site in England showed that IricES1 was present in 96% of adult females and 44% of nymphs (unsexed). No adult males were found to be infected. Despite the apparent parasitism of host mitochondria by IricES1, the available information suggests that the bacterium has an obligate relationship with its host, although this must be confirmed.  相似文献   

18.
Y Endo  T Oka  K Tsurugi  H Franz 《FEBS letters》1989,248(1-2):115-118
A toxic lectin from Phoradendron californicum (PCL) was found to inactivate catalytically 60 S ribosomal subunits of rabbit reticulocytes, resulting in the inhibition of protein synthesis. To study the mechanism of action of PCL, rat liver ribosomes were treated with the toxin and the extracted rRNA was treated with aniline. A fragment containing about 450 nucleotides was released from the 28 S rRNA. Analysis of the nucleotide sequence of the fragment revealed that the aniline-sensitive phosphodiester bond was between A4324 and G4325 of the 28 S rRNA. These results indicate that PCL inactivates the ribosomes by cleaving an N-glycosidic bond at A4324 of 28 S rRNA in the ribosomes as does ricin A-chain.  相似文献   

19.
The time of synthesis of ribosomal genes was studied in a haploid (Rana pipiens), and a pseudodiploid (Chinese hamster) cell line. R. pipiens cells were synchronized by amethopterin block. Chinese hamster cells were synchronized by isoleucine starvation followed by hydroxyurea treatment. DNA replicated during three or four selected intervals of the S period was separated from the remainder of the DNA by bromodeoxyuridine density labeling. Purified bromodeoxyuridine substituted DNA was annealed with radioactive-labeled 28S ribosomal RNA (rRNA) to determine when, during different intervals of S, the nuclear DNA homologous to rRNA was replicated. In the R. pipiens and Chinese hamster cell lines, the percent of nuclear DNA homologous to 28S rRNA is highest in the DNA replicated during the first half of the S period.  相似文献   

20.
The secondary structure of mouse Ehrlich ascites 18S, 5.8S and 28S ribosomal RNA in situ was investigated by chemical modification using dimethyl sulphate and 1-cyclohexyl-3-(morpholinoethyl) carbodiimide metho-p-toluene sulphonate. These reagents specifically modify unpaired bases in the RNA. The reactive bases were localized by primer extension followed by gel electrophoresis. The three rRNA species were equally accessible for modification i.e. approximately 10% of the nucleotides were reactive. The experimental data support the theoretical secondary structure models proposed for 18S and 5.8/28S rRNA as almost all modified bases were located in putative single-strand regions of the rRNAs or in helical regions that could be expected to undergo dynamic breathing. However, deviations from the suggested models were found in both 18S and 28S rRNA. In 18S rRNA some putative helices in the 5'-domain were extensively modified by the single-strand specific reagents as was one of the suggested helices in domain III of 28S rRNA. Of the four eukaryote specific expansion segments present in mouse Ehrlich ascites cell 28S rRNA, segments I and III were only partly available for modification while segments II and IV showed average to high modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号