首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Noy D  Dutton PL 《Biochemistry》2006,45(7):2103-2113
We introduce LH1beta24, a minimal 24 amino acid polypeptide that binds and assembles bacteriochlorophylls (BChls) in micelles of octyl beta-glucoside (OG) into complexes with spectral properties that resemble those of B820, a universal intermediate in the assembly of native purple bacterial light-harvesting complexes (LHs). LH1beta24 was designed by a survey of sequences and crystal structures of bacterial LH proteins from different organisms combined with currently available information from in vitro reconstitution studies and genetically modified LHs in vivo. We took as a template for the design sphbeta31, a truncated 31 amino acid analogue of the native beta-apoprotein from the core LH complex of Rhodobacter sphaeroides. This peptide self-assembles with BChls to form B820 and, upon cooling and lowering OG concentration, forms red-shifted B850 spectral species that are considered analogous to native LH complexes. We find that LH1beta24 self-assembles with BChl in OG to form homodimeric B820-type subunits comprising two LH1beta24 and two BChl molecules per subunit. We demonstrate, by modeling the structure using the highly homologous structure of LH2 from Rhodospirillum molischianum, that it has the minimal size for BChl binding. Additionally, we have compared the self-assembly of sphbeta31 and LH1beta24 with BChls and discovered that the association enthalpies and entropies of both species are similar to those measured for native LH1 from Rhodospirillum rubrum. However, sphbeta31 readily aggregates into intermediate higher oligomeric species and further to form B850 species; moreover, the assembly process of these oligomers is not reversible, and they are apparently large nonspecific BChl-peptide coaggregates rather than well-defined nativelike LH complexes. Similar aggregates were observed during LH1beta24 assembly, but these were formed less readily and required lower temperatures than sphbeta31. In view of these results, we reevaluate previous in vitro reconstitution studies and propose alternative templates for new designs.  相似文献   

2.
We have measured the singlet-singlet quenching of the bacteriochlorophyll (BChl) fluorescence yield as a function of excitation intensity in a number of antenna complexes isolated from photosynthetic bacteria. Our results show that the lithium dodecyl sulfate (LDS)-B875, LDS-B800 – 850 and lauryldimethylamine N-oxide complexes of Rhodopseudomonas sphaeroides contain 8, greater than 25 and greater than 600 BChl a molecules, respectively. The size of the Rhodopspirillum rubrum B880 complex is greater than 70 BChl a and that of the water-soluble BChl a complex from Prosthecochloris aestuarii about 20–25 BChl a. These results are discussed in relation to current models of the arrangement of antenna complexes within the photosynthetic membranes.  相似文献   

3.
The binding and assembly of clathrin triskelions on vesicle membranes seem to be mediated by certain assembly polypeptides (Keen, J.H., Willingham, M.C., and Pastau, I.H. (1979) Cell 16, 303-312). These assembly polypeptides were further purified into two distinct complexes using hydroxylapatite chromatography. Peak 1 consists of two major bands of 98 and 112 kDa, two minor bands of 103 and 118 kDa, and a polypeptide of 46 kDa. Peak 2 consists of one major band of 100 kDa, two minor bands of 103 and 115 kDa, and a polypeptide of 50 kDa. Both complexes have a native molecular mass of 290 kDa as determined by gel filtration. Each 290-kDa complex contains two polypeptides of 98-118/100-115 kDa and two polypeptides of 46/50 kDa. The 46-kDa polypeptide is not phosphorylated, whereas the 50-kDa polypeptide is. Both peaks contain 50-kDa kinase-like activity. Time courses of the 50-kDa phosphorylation show that the activity in peak 1 saturates much faster than the activity in peak 2; there may be two 50-kDa kinase activities in coated vesicles. A kinase that phosphorylates the polypeptides in 98-118-kDa group is present in peak 1 but not in peak 2. Both peaks assemble clathrin triskelions into cages under conditions in which the clathrin alone would not assemble. Both rotary shadowed and negatively stained preparations of these reassembled cages as well as the purified complexes were examined by electron microscopy. Thus, two complexes have been identified that differ in their polypeptide composition and kinase activities, but are similar in their ability to assemble clathrin triskelions into cages.  相似文献   

4.
5.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

6.
The effects of exogenous vitamin B12 on the green sulfur photosynthetic bacterium Chlorobium (Chl.) tepidum were examined. Wild-type cells and mutant cells lacking a gene CT0388 (denoted as VB0388) of Chl.tepidum were grown in liquid cultures containing different concentrations of vitamin B12. The VB0388 cells hardly grew in vitamin B12-limited media, indicating that the product of CT0388 actually played an important role in vitamin B12 biosynthesis in Chl. tepidum. Both wild-type and VB0388 cells in vitamin B12-limited media exhibited absorption bands and CD signals at the Qy region that were shifted to a shorter wavelength than those of cells grown in normal media. BChl c isomers that had S-stereochemistry at the 3(1)-position tended to increase in Chl. tepidum grown in vitamin B12-limited media.  相似文献   

7.
One-component homopolymers of cationic monomers (polycations) and diblock copolymers comprising poly(ethylene glycol) (PEG) and a polycation block have been the most widely used types of polymers for the formulation of polymer-based gene delivery systems. In this study, we incorporate a hydrophobic middle block into the conventional PEG-polycation architecture and investigate the effects of this hydrophobic modification on the physicochemical and cell-level biological properties of the polymer-DNA complexes that are relevant to gene delivery applications. The ABC-type triblock copolymer used in this study consists of (A) PEG, (B) hydrophobic poly( n-butyl acrylate) (PnBA), and (C) cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) component polymers. The properties of the triblock copolymer/DNA complexes are compared with those of two other more conventional DNA carriers derived, respectively, using a PDMAEMA homopolymer and a PEG-PDMAEMA diblock copolymer that had comparable molecular weights for individual blocks. In aqueous solution, the PEG-PnBA-PDMAEMA polymer forms positively charged spherical micelles. The electrostatic complexation of these micelles with plasmid DNA molecules results in the formation of stable small-sized DNA particles that are coated with a micelle monolayer, as confirmed by agarose gel electrophoresis, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). Proton nuclear magnetic resonance ( (1)H NMR) spectroscopy measurements indicate that the whole micelle-DNA assembly (named micelleplex for convenience) is shielded predominantly by the PEG chains. DLS and optical microscopy imaging measurements indicate that compared with PDMAEMA-DNA polyplexes, the micelleplexes have a significantly lower tendency to aggregate under physiological salt concentrations and show reduced interactions with negatively charged components in serum such as albumin and erythrocytes. While the micelleplexes are comparable to the PEG-PDMAEMA-based DNA polyplexes in terms of their stability against aggregation under high salt concentrations and in the presence of the albumin protein, they have a slightly higher tendency to interact with erythrocytes than the diblock copolymer polyplexes. Agarose gel electrophoresis measurements indicate that relative to the PEG-PDMAEMA polyplexes, the micelleplexes provide better protection of the encapsulated DNA from enzymatic degradation and also exhibit greater stability against disintegration induced by polyanionic additives; in these respects, the PDMAEMA homopolymer-based polyplexes show the best performance. In vitro studies in HeLa cells indicate that the PDMAEMA polyplexes show the highest gene transfection efficiency among the three different gene delivery systems. Between the micelleplexes and the PEG-PDMAEMA polyplexes, a higher gene transfection efficiency is observed with the latter system. All three formulations show comparable levels of cytotoxicity in HeLa cells.  相似文献   

8.
We have designed and engineered the human cytotoxic T-lymphocyte associated protein-4 (CTLA-4) variable (V-like) domain to produce a human-based protein scaffold for peptide display. First, to test whether the CTLA-4 CDR-like loops were permissive to loop replacement/insertion we substituted either the CDR1 or CDR3 loop with somatostatin, a 14-residue intra-disulfide-linked neuropeptide. Upon expression as periplasmic-targeted proteins in Escherichia coli, molecules with superior solubility characteristics to the wild-type V-domain were produced. These mutations in CTLA-4 ablated binding to its natural ligands CD80 and CD86, whereas binding to a conformation-dependent anti-CTLA-4 monoclonal antibody showed that the V-domain framework remained correctly folded. Secondly, to develop a system for library selection, we displayed both wild-type and mutated CTLA-4 proteins on the surface of fd-bacteriophage as fusions with the geneIII protein. CTLA-4 displayed on phage bound specifically to immobilized CD80-Ig and CD86-Ig and in one-step panning enriched 5,000 to 2,600-fold respectively over wild-type phage. Bacteriophage displaying CTLA-4 with somatostatin in CDR3 (CTLA-4R-Som3) specifically bound somatostatin receptors on transfected CHO-K1 cells pre-incubated with 1 microg/ml tunicamycin to remove receptor glycosylation. Binding was specific, as 1 microM somatostatin successfully competed with CTLA-4R-Som3. CTLA-4R-Som3 also activated as well as binding preferentially to non-glycosylated receptor subtype Sst4. The ability to substitute CDR-like loops within CTLA-4 will enable design and construction of more complex libraries of single V-like domain binding molecules. Proteins 1999;36:217-227.  相似文献   

9.
The spirolactam ring-opening process of rhodamine derivative is one of the most useful mechanisms for controlling fluorescence properties. However, the open/closed equilibrium reaction of rhodamine spirolactam has not been well characterized. Therefore, we examined the relationship between the spirolactam ring-opening process of rhodamine derivatives and the structure of the xanthene moiety. Based on the results of this investigation, we selected a candidate xanthene moiety for a Zn2+ sensor, and successfully developed a new fluorescence probe for Zn2+.  相似文献   

10.
Mucilages from the root tips of axenically-grown maize and from a bacterium (Cytophaga sp.) isolated from the rhizosheaths of field-grown roots, were immobilized by drying onto nylon blotting membrane. The mucilage plaques remained in place through repeated rewettings and histochemical treatments. Staining of the plaques showed that both mucilages included acidic groups, and 1,2 diols (the latter notably fewer in bacterial mucilage). Bacterial mucilage plaques stained strongly for protein, plant mucilage was unstained. Plaques of both mucilages bound soil particles strongly if soil was applied to wet mucilage and then dried. Bound soil was not lost with rewetting. Dry weight and densitometer measurements showed that bacterial mucilage bound about 10% more soil than the same surface area of root-cap mucilage. Pretreatment of plaques with periodate oxidation eliminated most soil binding by root-cap mucilage but this was completely reversible by reduction with borohydride. Soil binding to bacterial mucilage was unaffected by periodate but much diminished by borohydride pretreatment (partially restored by subsequent oxidation). Neither pretreatment with cationic dyes nor preincubation in pectinase, pectin methylesterase or protease affected subsequent soil binding by the mucilage plaques. Pretreatment of root-cap mucilage plaques with lectins specific for component sugars also did not alter soil binding. It is concluded that mucilages of both plant and bacterial origin can contribute to the adhesion and cohesion of maize rhizosheaths, but each by a different mechanism. Binding by root-cap mucilage depends on 1,2 diol groups of component sugars, that of bacterial mucilage does not, and is likely to be protein mediated. ei]Section editor: R O D Dixon  相似文献   

11.
12.
Conversions of the C-5 acetamide group in sialic acid into two kinds of C=C double bond substituents were accomplished under Shotten-Baumann conditions. The polymerizable glycomonomers also contain a hydrophobic chain or hydroxyl group at the anomeric position. Radical polymerizations of the fully protected glycomonomers were carried out with acryl amide in the presence of ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED), followed by deprotection to furnish water-soluble glycopolymers. The activities of the deprotected glycopolymers and glycomonomers against human influenza viruses (H1N1 and H3N2) and avian influenza virus (H5N3) were evaluated. Biological evaluations showed that the glycomonomers containing a long hydrophobic chain at the anomeric position had both hemagglutination and neuraminidase inhibitory activities.  相似文献   

13.
In the developing spinal cord, axons project in both the transverse plane, perpendicular to the floor plate, and in the longitudinal plane, parallel to the floor plate. For many axons, the floor plate is a source of long- and short-range guidance cues that govern growth along both dimensions. We show here that B-class transmembrane ephrins and their receptors are reciprocally expressed on floor plate cells and longitudinally projecting axons in the mouse spinal cord. During the period of commissural axon pathfinding, B-class ephrin protein is expressed at the lateral floor plate boundaries, at the interface between the floor plate and the ventral funiculus. In contrast, B-class Eph receptors are expressed on decussated commissural axon segments projecting within the ventral funiculus, and on ipsilaterally projecting axons constituting the lateral funiculus. Soluble forms of all three B-class ephrins bind to, and induce the collapse of, commissural growth cones in vitro. The collapse-inducing activity associated with B-class ephrins is likely to be mediated by EphB1. Taken together, these data support a possible role for repulsive B-class Eph receptor/ligand interactions in constraining the orientation of longitudinal axon projections at the ventral midline.  相似文献   

14.
Following our research project aimed at obtaining new compounds with high affinity and selectivity toward alpha(1)-adrenoceptors (AR), a new class of piperazine derivatives was designed, synthesized and biologically tested. The new compounds 1-13 are characterized by a flavone system linked, through an ethoxy or propoxy spacer, to a phenyl- or pyridazinone-piperazine moiety. Biological data showed an interesting profile for the phenylpiperazine subclass found to have a nanomolar affinity toward alpha(1)-AR, and less pronounced affinity for alpha(2)-AR and the 5-HT(1A) serotoninergic receptor. A discussion on the structure-activity relationship (SAR) of such compounds is also reported, on the basis of the flavone substitution pattern, length and functionalization of the spacer, and disruption of the phenylpiperazine system.  相似文献   

15.
16.
Molecular mechanical calculations of the optimal structure and relative stability of duplexes of dA6 with non-ionic oligonucleotide analogs of the methylphosphonate d(TpCH3)6 and phosphotriester d(TpOEt)6 have been carried out. Duplexes of dA6 and non-ionic oligonucleotide analogs with Rp enantiomeric configuration of modified phosphorous groups in d(TpCH3) and Sp in d(TpOEt) turned out to be more stable than those with second enantiomeric configurations Sp and Rp, respectively. The main factors of energetic selectivity between Sp and Rp stereoisomers have been found to be steric strains and electrostatic interaction between asymmetric modified phosphate groups and the d-ribose 5' end. NOE generated distances between protons of alkyl substitute and d-ribose H2", H3' have been analysed. The results of the calculations are in agreement with experimental observations.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号