首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MM Dix  GM Simon  C Wang  E Okerberg  MP Patricelli  BF Cravatt 《Cell》2012,150(2):426-440
Caspase proteases are principal mediators of apoptosis, where they cleave hundreds of proteins. Phosphorylation also plays an important role in apoptosis, although the extent to which proteolytic and phosphorylation pathways crosstalk during programmed cell death remains poorly understood. Using a quantitative proteomic platform that integrates phosphorylation sites into the topographical maps of proteins, we identify a cohort of over 500 apoptosis-specific phosphorylation events and show that they are enriched on cleaved proteins and clustered around sites of caspase proteolysis. We find that caspase cleavage can expose new sites for phosphorylation, and, conversely, that phosphorylation at the +3 position of cleavage sites can directly promote substrate proteolysis by caspase-8. This study provides a global portrait of the apoptotic phosphoproteome, revealing heretofore unrecognized forms of functional crosstalk between phosphorylation and caspase proteolytic pathways that lead to enhanced rates of protein cleavage and the unveiling of new sites for phosphorylation.  相似文献   

2.
Intricate networks of protein kinases are intimately involved in the regulation of cellular events related to cell proliferation and survival. In addition to protein kinases, cells also contain networks of proteases including aspartic-acid directed caspases organized in cascades that play a major role in the regulation of cell survival through their involvement in the initiation and execution phases of apoptosis. Perturbations in regulatory protein kinase and caspase networks induce alterations in cell survival and frequently accompany transformation and tumorigenesis. Furthermore, recent studies have documented that caspases or their substrates are subject to phosphorylation in cells illustrating a potential convergence of protein kinase and caspase signaling pathways. Interestingly, a number of caspase substrates are protected from cleavage when they are phosphorylated at sites that are adjacent to caspase cleavage sites. While it is theoretically possible that many distinct protein kinases could protect proteins from caspase-mediated cleavage, protein kinase CK2 is of particular interest because acidic amino acids, including aspartic acid residues that are recognized by caspases, are its dominant specificity determinants.  相似文献   

3.
Caspases, a family of evolutionarily, conserved cysteinyl proteases, mediate both apoptosis and inflammation through aspartate-specific cleavage of a wide number of cellular substrates. Most substrates of apoptotic caspases have been conotated with cellular dismantling, while inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. Through detailed functional analysis of conditional caspase-deficient mice or derived cells, caspase biology has been extended to cellular responses such as cell differentiation, proliferation and NF-kappaB activation. Here, we discuss recent data indicating that non-apoptotic functions of caspases involve proteolysis exerted by their catalytic domains as well as non-proteolytic functions exerted by their prodomains. Homotypic oligomerization motifs in the latter mediate the recruitment of adaptors and effectors that modulate NF-kappaB activation. The non-apoptotic functions of caspases suggest that they may become activated independently of--or without--inducing an apoptotic cascade. Moreover, the existence of non-catalytic caspase-like molecules such as human caspase-12, c-FLIP and CARD-only proteins further supports the non-proteolytic functions of caspases in the regulation of cell survival, proliferation, differentiation and inflammation.  相似文献   

4.
The Alzheimer's disease-associated presenilin (PS) 1 is intimately involved in gamma-secretase cleavage of beta-amyloid precursor protein and other proteins. In addition, PS1 plays a role in beta-catenin signaling and in the regulation of apoptosis. Here we demonstrate that phosphorylation of PS1 is regulated by two independent signaling pathways involving protein kinase (PK) A and PKC and that both kinases can directly phosphorylate the large hydrophilic domain of PS1 in vitro and in cultured cells. A phosphorylation site at serine residue 346 was identified that is selectively phosphorylated by PKC but not by PKA. This site is localized within a recognition motif for caspases, and phosphorylation strongly inhibits proteolytic processing of PS1 by caspase activity during apoptosis. Moreover, PS1 phosphorylation reduces the progression of apoptosis. Our data indicate that phosphorylation/dephosphorylation at the caspase recognition site provides a mechanism to reversibly regulate properties of PS1 in apoptosis.  相似文献   

5.
The caspase family of cysteine proteases is essential for implementation of physiological cell death. Since a wide variety of cellular proteins is cleaved by caspases during apoptosis, it has been predicted that digestion of proteins crucial to maintaining the life of a cell is central to apoptosis. To assess the role of the proteolytic destruction during apoptosis, we introduced the non-specific protease proteinase K into intact cells. This introduction led to extensive digestion of cellular proteins, including physiological caspase-substrates. Caspase-3-like activity was induced rapidly, followed by morphological signs of apoptosis such as membrane blebbing and nuclear condensation. The caspase inhibitor Z-VAD-fmk inhibited the appearance of these morphological changes without reducing the extent of intracellular proteolysis by proteinase K. Loss of integrity of the cell membrane, however, was not blocked by Z-VAD-fmk. This system thus generated conditions of extensive destruction of caspase substrates by proteinase K in the absence of apoptotic morphology. Taken together, these experiments suggest that caspases implement cell death not by protein destruction but by proteolytic activation of specific downstream effector molecules.  相似文献   

6.
Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment during drug- and UV light–induced apoptosis; this fragment comigrates with K18 cleaved in vitro by caspase-6, -3, and -7. K18 is cleaved by caspase-6 into NH2-terminal, 26-kD and COOH-terminal, 22-kD fragments; caspase-3 and -7 additionally cleave the 22-kD fragment into a 19-kD fragment. The cleavage site common for the three caspases was the sequence VEVD/A, located in the conserved L1-2 linker region of K18. The additional site for caspases-3 and -7 that is not cleaved efficiently by caspase-6 is located in the COOH-terminal tail domain of K18. Expression of K18 with alanine instead of serine at position 53 demonstrated that cleavage during apoptosis does not require phosphorylation of serine 53. However, K18 with a glutamate instead of aspartate at position 238 was resistant to proteolysis during apoptosis. Furthermore, this cleavage site mutant appears to cause keratin filament reorganization in stably transfected clones. The identification of the L1-2 caspase cleavage site, and the conservation of the same or very similar sites in multiple other intermediate filament proteins, suggests that the processing of IFs during apoptosis may be initiated by a similar caspase cleavage.  相似文献   

7.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

8.
The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.  相似文献   

9.
Apoptosis, or programmed cell death, is a vital cellular process often impaired in diseases such as cancer. Aspartic acid-directed proteases known as caspases cleave a broad spectrum of cellular proteins and are central constituents of the apoptotic machinery. Caspases are regulated by a variety of mechanisms including protein phosphorylation. One intriguing mechanism by which protein kinases can modulate caspase pathways is by blocking substrate cleavage through phosphorylation of residues adjacent to caspase cleavage sites. To explore this mechanism in detail, we recently undertook a systematic investigation using a combination of bioinformatics, peptide arrays, and peptide cleavage assays to identify proteins with overlapping protein kinase and caspase recognition motifs (Duncan et al., Sci Signal 4:ra30, 2011). These studies implicated protein kinase CK2 as a global regulator of apoptotic pathways. In this article, we extend the analysis of proteins with overlapping CK2 and caspase consensus motifs to examine the convergence of CK2 with specific caspases and to identify CK2/caspase substrates known to be phosphorylated or cleaved in cells. Given its constitutive activity and elevated expression in cancer, these observations suggest that the ability of CK2 to modulate caspase pathways may contribute to a role in promoting cancer cell survival and raise interesting prospects for therapeutic targeting of CK2.  相似文献   

10.
Protein–protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas‐mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome‐wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases.  相似文献   

11.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

12.
Proteolytic cleavage of a limited number of cellular proteins is a central biochemical feature of apoptosis. Aspartate-specific cysteine proteases, the so-called caspases, are the main enzymes involved in this process. At least ten homologues of interleukin-1 converting enzyme (ICE), the first described human caspase, have been identified so far. The purified active proteins are heterodimers with a long and a short subunit derived from a common inactive precursor. Crystallized ICE has an original tetrameric structure. The various caspases tend to show high degrees of homology around the active site Cys. Proteolysis by caspases minimally requires a tetrapeptide substrate in which Asp is an absolute requirement in P1 position, the P4 substrate residue is unique to each homologue, and much more widespread amino acid substitution is observed in P2 and P3. Caspase activation might involve a proteolytic cascade similar to that of the coagulation cascade but the molecular ordering of these proteases in vivo remains to be established clearly. Calpains, serine proteases, granzymes and the proteasome–ubiquitin pathway of protein degradation are other proteolytic pathways that have been suggested to play a role in apoptosis. Substrate proteins can be either activated or degraded during cell death and the consequences of their cleavage remains mostly ill-understood. Nevertheless, the recent demonstration that protease inhibitors can rescue mice undergoing acute liver destruction indicates the accuracy of therapeutic strategies aiming to inhibit cell death-associated proteolysis.  相似文献   

13.
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.  相似文献   

14.
Keratin 8/18 breakdown and reorganization during apoptosis   总被引:13,自引:0,他引:13  
Monoclonal antibodies that specifically recognize caspase cleaved K18 fragments or specific (phospho)epitopes on intact K8 and K18 were used for a detailed investigation of the temporal and causal relationship of proteolysis and phosphorylation in the collapse of the keratin cytoskeleton during apoptosis. Caspases involved in the specific proteolysis of keratins were analyzed biochemically using recombinant caspases and specific caspase inhibitors. Finally, the fate of the keratin aggregates was analyzed using the M30-ApoptoSense trade mark Elisa kit to measure shedding of caspase cleaved fragments into the supernatant of apoptotic cell cultures. From our studies, we conclude that C-terminal K18 cleavage at the (393)DALD/S site is an early event during apoptosis for which caspase 9 is responsible, both directly and indirectly by activating downstream caspases 3 and 7. Cleavage of the L1-2 linker region of the central alpha-helical rod domain is responsible for the final collapse of the keratin scaffold into large aggregates. Phosphorylation facilitates formation of these aggregates, but is not crucial. K8 and K18 remain associated in heteropolymeric aggregates during apoptosis. At later stages of the apoptotic process, that is, when the integrity of the cytoplasmic membrane becomes compromised, keratin aggregates are shed from the cells.  相似文献   

15.
Signal-induced activation of caspases, the critical protease effectors of apoptosis, requires proteolytic processing of their inactive proenzymes. Consequently, regulation of procaspase processing is critical to apoptotic execution. We report here that baculovirus pancaspase inhibitor P35 and inhibitor of apoptosis Op-IAP prevent caspase activation in vivo, but at different steps. By monitoring proteolytic processing of endogenous Sf-caspase-1, an insect group II effector caspase, we show that Op-IAP blocked the first activation cleavage at TETD downward arrowG between the large and small caspase subunits. In contrast, P35 failed to affect this cleavage, but functioned downstream to block maturation cleavages (DXXD downward arrow(G/A)) of the large subunit. Substitution of P35's reactive site residues with TETDG failed to increase its effectiveness for blocking TETD downward arrowG processing of pro-Sf-caspase-1, despite wild-type function for suppressing apoptosis. These data are consistent with the involvement of a novel initiator caspase that is resistant to P35, but directly or indirectly inhibitable by Op-IAP. The conservation of TETD downward arrowG processing sites among insect effector caspases, including Drosophila drICE and DCP-1, suggests that in vivo activation of these group II caspases involves a P35-insensitive caspase and supports a model wherein apical and effector caspases function through a proteolytic cascade to execute apoptosis in insects.  相似文献   

16.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

17.
During apoptosis, the initiator caspase 9 is activated at the apoptosome after which it activates the executioner caspases 3 and 7 by proteolysis. During this process, caspase 9 is cleaved by caspase 3 at Asp(330), and it is often inferred that this proteolytic event represents a feedback amplification loop to accelerate apoptosis. However, there is substantial evidence that proteolysis per se does not activate caspase 9, so an alternative mechanism for amplification must be considered. Cleavage at Asp(330) removes a short peptide motif that allows caspase 9 to interact with IAPs (inhibitors of apoptotic proteases), and this event may control the amplification process. We show that, under physiologically relevant conditions, caspase 3, but not caspase 7, can cleave caspase 9, and this does not result in the activation of caspase 9. An IAP antagonist disrupts the inhibitory interaction between XIAP (X-linked IAP) and caspase 9, thereby enhancing activity. We demonstrate that the N-terminal peptide of caspase 9 exposed upon cleavage at Asp330 cannot bind XIAP, whereas the peptide generated by autolytic cleavage of caspase 9 at Asp315 binds XIAP with substantial affinity. Consistent with this, we found that XIAP antagonists were only capable of promoting the activity of caspase 9 when it was cleaved at Asp315, suggesting that only this form is regulated by XIAP. Our results demonstrate that cleavage by caspase 3 does not activate caspase 9, but enhances apoptosis by alleviating XIAP inhibition of the apical caspase.  相似文献   

18.
Caspases - controlling intracellular signals by protease zymogen activation   总被引:13,自引:0,他引:13  
Animal development and homeostasis is a balance between cell proliferation and cell death. Physiologic, and sometimes pathologic, cell death - apoptosis - is driven by activation of a family of proteases known as the caspases, present in almost all nucleated animal cells. The enzymatic properties of these proteases are governed by a dominant specificity for substrates containing Asp, and by the use of a Cys side chain for catalyzing peptide bond cleavage. The primary specificity for Asp turns out to be very rare among proteases, and currently the only other known mammalian proteases with the same primary specificity is the physiological caspase activator granzyme B. Like most other proteases, the caspases are synthesized as inactive zymogens whose activation requires limited proteolysis or binding to co-factors. To transmit the apoptotic execution signal, caspase zymogens are sequentially activated through either an intrinsic or an extrinsic pathway. The activation of caspases at the apex of each pathway, the initiators, occurs by recruitment to specific adapter molecules through homophilic interaction domains, and the activated initiators directly process the executioner caspases to their catalytically active forms. In the present communication we review the different mechanisms underlying the selective activation of the caspases.  相似文献   

19.
Interleukin 1β-converting enzyme (ICE)-like proteases (caspases) play an important role in programmed cell death (apoptosis), and elucidating the consequences of their proteolytic activity is central to our understanding of the molecular mechanisms of cell death. Diverse structural and regulatory proteins and enzymes, including protein kinase Cδ, the retinoblastoma protein (a protein involved in cell survival), the DNA repair enzyme DNA-dependent protein kinase and the nuclear lamins, undergo specific and limited endoproteolytic cleavage by various caspases during apoptosis. Since individual caspases can cleave multiple substrates, the consequences of cleavage of only a single substrate are still poorly understood. Nevertheless, proteolytic activation of protein kinase Cδ may be an important early step in the cell death pathway, and cleavage of the retinoblastoma protein could suppress its cell survival function, whereas proteolytic inactivation of DNA repair enzymes might compromise the ability of the cell to reverse DNA fragmentation. On the other hand, cleavages of nuclear and cytoplasmic structural proteins (e.g. the lamins and Gas2) appear to be required for or contribute to the dramatic rearrangements in cellular architecture that are necessary for the completion of the cell death process. An emerging theme is that parallel and sequential proteolytic activation and inactivation of key protein substrates occurs during the multiple steps of apoptosis.  相似文献   

20.
The tangles of Alzheimer's disease (AD) are comprised of the tau protein displaying numerous alterations, including phosphorylation at serine 422 (S422) and truncation at aspartic acid 421 (D421). Truncation at the latter site appears to result from activation of caspases, a class of proteases that cleave specifically at aspartic acid residues. It has been proposed that phosphorylation at or near caspase cleavage sites could regulate the ability of the protease to cleave at those sites. Here, we use tau pseudophosphorylated at S422 (S422E) to examine the effects of tau phosphorylation on its cleavage by caspase 3. We find that S422E tau is more resistant to proteolysis by caspase 3 than non-pseudophosphorylated tau. Additionally, we use antibodies directed against the phosphorylation site and against the truncation epitope to assess the presence of these epitopes in neurofibrillary tangles in the aged human brain. We show that phosphorylation precedes truncation during tangle maturation. Moreover, the distribution of the two epitopes suggests that a significant length of time (perhaps as much as two decades) elapses between S422 phosphorylation and cleavage at D421. We further conclude that tau phosphorylation at S422 may be a protective mechanism that inhibits cleavage in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号