首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.  相似文献   

2.
To gain new insight into the biological function of the human augmenter of liver regeneration (hALR) in HCC, we studied its involvement in radiation-induced damage and recovery of HCC cells. We found that hALR expression was up-regulated in both HCC tissues and multiple hepatoma cell lines and correlated significantly with increased radiation clonogenic survival after radiation treatment. Exogenous expression of hALR increased radiation resistance in SMMC-7721 cells, and the increased survival was accompanied by a decrease in apoptosis and a prolonged G2–M arrest after irradiation. Overexpression of ALR significantly increased the mitochondrial membrane potential, inhibited cytochrome c release, and opposed the loss of intracellular ATP levels after radiation. Moreover, knockdown of ALR by siRNA resulted in inhibition of viability in the absence of exogenously added oxidative stress and radiation sensitization in HepG2 cells. Importantly, hALR expression was very low in normal hepatocyte L02 cells, and hALR silencing had a minimal effect on L02 viability and radiation sensitivity. These results suggest that human ALR is important for hepatoma cell viability and involved in the protection of hepatoma cells against irradiation-induced damage by its association with mitochondria. Targeting hALR may be a promising novel approach to enhance the radiosensitivity of hepatoma cancers.  相似文献   

3.
Cellular response to oxidative stress: signaling for suicide and survival   总被引:54,自引:0,他引:54  
Reactive oxygen species (ROS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment as they can result in severe damage to DNA, protein, and lipids. The importance of oxidative damage to the pathogenesis of many diseases as well as to degenerative processes of aging has becoming increasingly apparent over the past few years. Cells contain a number of antioxidant defenses to minimize fluctuations in ROS, but ROS generation often exceeds the cell's antioxidant capacity, resulting in a condition termed oxidative stress. Host survival depends upon the ability of cells and tissues to adapt to or resist the stress, and repair or remove damaged molecules or cells. Numerous stress response mechanisms have evolved for these purposes, and they are rapidly activated in response to oxidative insults. Some of the pathways are preferentially linked to enhanced survival, while others are more frequently associated with cell death. Still others have been implicated in both extremes depending on the particular circumstances. In this review, we discuss the various signaling pathways known to be activated in response to oxidative stress in mammalian cells, the mechanisms leading to their activation, and their roles in influencing cell survival. These pathways constitute important avenues for therapeutic interventions aimed at limiting oxidative damage or attenuating its sequelae.  相似文献   

4.
Numerous studies have revealed that a part of the cellular response to chronic oxidative stress involves increased antioxidant capacity. However, another defense mechanism that has received less attention is DNA repair. Because of the important homeostatic role of mitochondria and the exquisite sensitivity of mitochondrial DNA (mtDNA) to oxidative damage, we hypothesized that mtDNA repair plays an important role in the protection against oxidative stress. To test this hypothesis mtDNA damage and repair was evaluated in normal HA1 Chinese hamster fibroblasts and oxidative stress-resistant variants isolated following chronic exposure to H2O2 or 95% O2. Reactive oxygen species were generated enzymatically using xanthine oxidase and hypoxanthine. When treated with xanthine oxidase reduced levels of initial mtDNA damage and enhanced mtDNA repair were observed in the cells from the oxidative stress-resistant variants, relative to the parental cell line. This enhanced mtDNA repair correlated with an increase in mitochondrial apurinic/apyrimidinic endonuclease activity in both H2O2- and O2-resistant HA1 variants. This is the first report showing enhanced mtDNA repair in the cellular response to chronic oxidative stress. These results provide further evidence for the crucial role that mtDNA repair pathways play in protecting cells against the deleterious effects of reactive oxygen species.  相似文献   

5.
6.
7.
8.
To analyze the effects of high concentrations of zinc ions on oxidative stress protection, we developed an original model of zinc-resistant HeLa cells (HZR), by using a 200 microM zinc sulfate-supplemented medium. Resistant cells specifically accumulate high zinc levels in intracellular vesicles. These resistant cells also exhibit high expression of metallothioneins (MT), mainly located in the cytoplasm. Exposure of HZR to Zn-depleted medium for 3 or 7 d decreases the intracellular zinc content, but only slightly reduces MT levels of resistant cells. No changes of the intracellular redox status were detected, but zinc resistance enhanced H2O2-mediated cytotoxicity. Conversely, zinc-depleted resistant cells were protected against H2O2-induced cell death. Basal- and oxidant-induced DNA damage was increased in zinc resistant cells. Moreover, measurement of DNA damage on zinc-depleted resistant cells suggests that cytoplasmic metal-free MT ensures an efficient protection against oxidative DNA damage, while Zn-MT does not. This newly developed Zn-resistant HeLa model demonstrates that high intracellular concentrations of zinc enhance oxidative DNA damage and subsequent cell death. Effective protection against oxidative damage is provided by metallothionein under nonsaturating zinc conditions. Thus, induction of MT by zinc may mediate the main cellular protective effect of zinc against oxidative injury.  相似文献   

9.
To understand the role of FoxO family members in hematopoiesis, we conditionally deleted FoxO1, FoxO3, and FoxO4 in the adult hematopoietic system. FoxO-deficient mice exhibited myeloid lineage expansion, lymphoid developmental abnormalities, and a marked decrease of the lineage-negative Sca-1+, c-Kit+ (LSK) compartment that contains the short- and long-term hematopoietic stem cell (HSC) populations. FoxO-deficient bone marrow had defective long-term repopulating activity that correlated with increased cell cycling and apoptosis of HSC. Notably, there was a marked context-dependent increase in reactive oxygen species (ROS) in FoxO-deficient HSC compared with wild-type HSC that correlated with changes in expression of genes that regulate ROS. Furthermore, in vivo treatment with the antioxidative agent N-acetyl-L-cysteine resulted in reversion of the FoxO-deficient HSC phenotype. Thus, FoxO proteins play essential roles in the response to physiologic oxidative stress and thereby mediate quiescence and enhanced survival in the HSC compartment, a function that is required for its long-term regenerative potential.  相似文献   

10.
In this study we investigated the potential antioxidant properties of blueberry polyphenolics in vitro and vivo, using red blood cell (RBC) resistance to reactive oxygen species (ROS) as the model. In vitro incubation with anthocyanins or hydroxycinnamic acids (HCA) (0.5 and 0.05 mg/ml) was found to enhance significantly RBC resistance to H2O2 (100 microM) induced ROS production. This protection was also observed in vivo following oral supplementation to rats at 100 mg/ml. However, only anthocyanins were found to afford protection at a significant level, this at 6 and 24 h post supplementation. This protection was not consistent with the measured plasma levels of anthocyanins. Indeed, plasma polyphenolic concentrations were highest after 1 h, declining considerably after 6 h and not detected after 24 h. The difference in absorption between anthocyanins and HCA is likely to have contributed to the observed difference in their abilities to afford protection to RBC. This protection represents a positive role following dietary consumption of polyphenolics from blueberries, against ROS formation within RBC in vivo.  相似文献   

11.
The plasma membrane is compartmentalized into microdomains and the association/dissociation of receptors and signaling molecules with/from these membrane domains is a major principle for regulation of signal transduction. By following the reorganization of microdomains on living cells and performing biochemical studies, we show that Ab targeting of the T cell activation-associated Ag CD147 prevents TCR stimulation-dependent reorganization and clustering of microdomains. Triggering CD147 induces a displacement of the GPI-anchored coreceptors CD48 and CD59 from microdomains in human T lymphocytes. This perturbation of microdomains is accompanied by a selective inhibition of TCR-mediated T cell proliferation. The CD147-inhibited cells secret normal levels of IL-2 but acquire reduced amounts of the IL-2 receptor alpha-chain CD25. These results indicate that negative regulating signals can modulate microdomains and suggest a general mechanism for inhibition of receptor signaling.  相似文献   

12.
CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited the association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells.  相似文献   

13.
Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN or CD147), a member of the immunoglobulin family and a glycoprotein enriched on the surface of tumor cells, promotes invasion, metastasis, and growth and survival of malignant cells and confers resistance to some chemotherapeutic drugs. However, the molecular mechanisms underlying the actions of EMMPRIN are not fully understood. In this study we sought to determine whether EMMPRIN contributes to the malignant phenotype of breast cancer by inhibiting anoikis, a form of apoptosis induced by loss or alteration of cell-cell or cell-matrix anchorage, and to explore the signaling pathways involved. We found that in the absence of attachment, human breast carcinoma cells expressing high levels of EMMPRIN formed less compact aggregates with larger surface area and less fibronectin matrix assembly, had higher viability, and were resistant to anoikis. Knockdown of EMMPRIN expression by RNA interference (small interfering RNA or short hairpin RNA) sensitized cancer cells to anoikis, as demonstrated by activation of caspase-3, increased DNA fragmentation, and decreased cellular viability. Furthermore, we observed that the accumulation of Bim, a proapoptotic BH3-only protein, was reduced in EMMPRIN-expressing cells and that silencing of EMMPRIN expression elevated Bim protein levels and enhanced cellular sensitivity to anoikis. Treatment of cells with a MEK inhibitor (U0126) or proteasome inhibitor (epoxomicin) also up-regulated Bim accumulation and rendered cells more sensitive to anoikis. These results indicated that expression of EMMPRIN protects cancer cells from anoikis and that this effect is mediated at least in part by a MAP kinase-dependent reduction of Bim. Because anoikis deficiency is a key feature of neoplastic transformation and invasive growth of epithelial cancer cells, our study on the role of EMMPRIN in anoikis resistance and the mechanism involved underscores the potential of EMMPRIN expression as a prognostic marker and novel target for cancer therapy.  相似文献   

14.
The differentiation of double-positive (DP) CD4(+)CD8(+) thymocytes to single-positive CD4(+) or CD8(+) T cells is regulated by signals that are initiated by coengagement of the Ag (TCR) and costimulatory receptors. CD28 costimulatory receptors, which augment differentiation and antiapoptotic responses in mature T lymphocytes, have been reported to stimulate both differentiation and apoptotic responses in TCR-activated DP thymocytes. We have used artificial APCs that express ligands for TCR and CD28 to show that CD28 signals increase expression of CD69, Bim, and cell death in TCR-activated DP thymocytes but do not costimulate DP thymocytes to initiate the differentiation program. The lack of a differentiation response is not due to defects in CD28-initiated TCR proximal signaling events but by a selective defect in the activation of ERK MAPK. To characterize signals needed to initiate the death response, a mutational analysis was performed on the CD28 cytoplasmic domain. Although mutation of all of CD28 cytoplasmic domain signaling motifs blocks cell death, the presence of any single motif is able to signal a death response. Thus, there is functional redundancy in the CD28 cytoplasmic domain signaling motifs that initiate the thymocyte death response. In contrast, immobilized Abs can initiate differentiation responses and cell death in DP thymocytes. However, because Ab-mediated differentiation occurs through CD28 receptors with no cytoplasmic domain, the response may be mediated by increased adhesion to immobilized anti-TCR Abs.  相似文献   

15.
The hepatitis E virus causes acute viral hepatitis endemic in much of the developing world and is a serious public health problem. However, due to the lack of an in vitro culture system or a small animal model, its biology and pathogenesis are poorly understood. We have shown earlier that the ORF3 protein (pORF3) of hepatitis E virus activates ERK, a member of the MAPK superfamily. Here we have explored the mechanism of pORF3-mediated ERK activation and demonstrated it to be independent of the Raf/MEK pathway. Using biochemical assays, yeast two-hybrid analysis, and intracellular fluorescence resonance energy transfer we showed that pORF3 binds Pyst1, a prototypic member of the ERK-specific MAPK phosphatase. The binding regions in the two proteins were mapped to the N terminus of pORF3 and a central portion of Pyst1. Expression of pORF3 protected ERK from the inhibitory effects of ectopically expressed Pyst1. This is the first example of a viral protein regulating ERK activation by inhibition of its cognate dual specificity phosphatase.  相似文献   

16.
Reactive oxygen species (ROS) may cause cellular damage and oxidative stress-induced cell death. Autophagy, an evolutionarily conserved intracellular catabolic process, is executed by autophagy (ATG) proteins, including the autophagy initiation kinase Unc-51-like kinase (ULK1)/ATG1. Although autophagy has been implicated to have both cytoprotective and cytotoxic roles in the response to ROS, the role of individual ATG proteins, including ULK1, remains poorly characterized. In this study, we demonstrate that ULK1 sensitizes cells to necrotic cell death induced by hydrogen peroxide (H2O2). Moreover, we demonstrate that ULK1 localizes to the nucleus and regulates the activity of the DNA damage repair protein poly (ADP-ribose) polymerase 1 (PARP1) in a kinase-dependent manner. By enhancing PARP1 activity, ULK1 contributes to ATP depletion and death of H2O2-treated cells. Our study provides the first evidence of an autophagy-independent prodeath role for nuclear ULK1 in response to ROS-induced damage. On the basis of our data, we propose that the subcellular distribution of ULK1 has an important role in deciding whether a cell lives or dies on exposure to adverse environmental or intracellular conditions.Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2), are formed by the incomplete reduction of oxygen during oxidative phosphorylation and other enzymatic processes. ROS are signaling molecules that regulate cell proliferation, differentiation, and survival.1, 2, 3 Accumulation of ROS (i.e., oxidative stress) on exposure to xenobiotic agents or environmental toxins can cause cellular damage and death via apoptotic or nonapoptotic pathways.4, 5, 6 Oxidative stress-induced cellular damage and death have been implicated in aging, ischemia-reperfusion injury, inflammation, and the pathogenesis of diseases (e.g., neurodegeneration and cancer).7 Oxidative stress also contributes to the antitumor effects of many chemotherapeutic drugs, including camptothecin8, 9 and selenite.10, 11Autophagy, an evolutionarily conserved intracellular catabolic process, involves lysosome-dependent degradation of superfluous and damaged cytosolic organelles and proteins.12 It is typically upregulated under conditions of perceived stress and in response to cellular damage. The consequence of autophagy activation – whether cytoprotective or cytotoxic – appears to depend on the cell type and the nature and extent of stress. Although most studies indicate a cytoprotective role for autophagy, some evidence suggests that it contributes to cell death in response to oxidative stress.13, 14, 15, 16, 17 Studies have also indicated that autophagy may be suppressed in response to oxidative stress, thereby sensitizing certain cells to apoptosis.18, 19 Unc-51-like kinase/autophagy 1 (ULK1/ATG1) is a mammalian serine–threonine kinase that regulates flux through the autophagy pathway by activating the VPS34 PI(3) kinase complex and facilitating ATG9-dependent membrane recycling.20 Results from two studies suggest that ULK1 expression is altered in response to oxidative stress, and that the corresponding effects on autophagy contribute to cell death.18, 21For example, p53-mediated upregulation of ULK1 and increase in autophagy promote cell death in osteosarcoma cells exposed to sublethal doses of camptothecin,21 yet mutant p53-mediated suppression of ULK1 impairs autophagic flux and promotes apoptosis in selenite-treated NB4 cells.18 Here we investigated the role of ULK1 in cells exposed to H2O2.  相似文献   

17.
18.
The aims of this study were; (i) to elucidate the mechanisms involved in determining cell type-specific responses to oxidative stress and (ii) to test the hypothesis that cell types which are subjected to high oxidative burdens in vivo, have greater oxidative stress resistance. Cultures of the retinal pigment epithelium (RPE), corneal fibroblasts, alveolar type II epithelium and skin epidermal cells were studied. Cellular sensitivity to H2O2 was determined by the MTT assay. Cellular antioxidant status (CuZnSOD, MnSOD, GPX, CAT) was analyzed with enzymatic assays and the susceptibility and repair capacities of nuclear and mitochondrial genomes were assessed by QPCR. Cell type-specific responses to H2O2 were observed. The RPE had the greatest resistance to oxidative stress (P>0.05; compared to all other cell types) followed by the corneal fibroblasts (P < 0.05; compared to skin and lung cells). The oxidative tolerance of the RPE coincided with greater CuZnSOD, GPX and CAT enzymatic activity (P < 0.05; compared to other cells). The RPE and corneal fibroblasts both had up-regulated nDNA repair post-treatment (P < 0.05; compared to all other cells). In summary, variations in the synergistic interplay between enzymatic antioxidants and nDNA repair have important roles in influencing cell type-specific vulnerability to oxidative stress. Furthermore, cells located in highly oxidizing microenvironments appear to have more efficient oxidative defence and repair mechanisms.  相似文献   

19.
20.
MicroRNAs (miRNAs) are involved in the regulation of multiple cellular processes. Changes of miRNA expression have been linked to the development of various diseases including cancer, but the molecular events leading to these changes at different physiological conditions are not well characterized. Here we examined the intracellular events responsible for the miR-466h-5p activation in mouse cells exposed to glucose deprivation. MiR-466h-5p is a member of the miR-297-669 cluster located in intron 10 of Sfmbt2 gene on mouse chromosome 2 and has a pro-apoptotic role. We showed that the time-dependant activation of miR-466h-5p, miR-669c and the Sfmbt2 gene followed the inhibition of histone deacetylation caused by glucose deprivation-induced oxidative stress. This oxidative stress causes the accumulation of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH) that together inhibited histone deacetylases (HDACs) activity, reduced protein levels of HDAC2 and increased acetylation in miR-466h-5p promoter region, which led to the activation of this miRNA. Based on this study and previous work, we suggest a possible role of miR-466h-5p (and miR 297-669 cluster) in the cells during toxic metabolites accumulation. Improved characterization of the molecular events that lead to the activation of miR-466h-5p may provide a better understanding of the relation between cellular environment and miRNA activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号