首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During animal development many cells undergo programed deaths. Recently, genes that suppress the cell-death program have been described in both vertebrates and invertebrates. These genes play a vital role in regulation of the molecules that kill cells, and disruption of this regulatory process can contribute to disease.  相似文献   

2.
Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway.  相似文献   

3.
Akt and Bcl-xL both promote resistance to apoptosis. A comparison of Akt- and Bcl-xL-dependent cell survival was undertaken. Expression of constitutively active Akt allows cells to survive for prolonged periods in the absence of growth factors. This survival correlates with the expression level of activated Akt and is comparable in magnitude to the protection provided by the anti-apoptotic gene Bcl-xL. Although both genes prevent cell death, Akt-protected cells can be distinguished from Bcl-xL-protected cells on the basis of increased glucose transporter expression, glycolytic activity, mitochondrial potential, and cell size. In addition, Akt-expressing cells require high levels of extracellular nutrients to support cell survival. In  相似文献   

4.
谭晓红  杨晓 《生命科学》2011,(4):353-358
针对表皮生长因子受体(EGFR)和血管生成(angiogenesis)信号通路的靶向治疗已经在晚期非小细胞肺癌的治疗上取得成功,但由于抗药性的存在,大多数晚期患者的生存时间仍然提高有限。继发性的EGFR T790M突变和原癌基因肝细胞生长因子受体(MET)的扩增被鉴定为两种主要的抗药机制。最近转化生长因子-β(TGF-β)/白介素-6信号通路被报道能介导选择性和适应性地对erlotinib的抗药。另一方面,Kras突变所致肺癌的靶向治疗方面也取得了一些进展。双重抑制磷脂酰肌醇3-激酶(PI3K)和促分裂素原活化蛋白激酶激酶(MEK)信号通路可导致Kras突变肿瘤的显著消退,联合抑制SRC、PI3K和MEK可使丝氨酸/苏氨酸蛋白激酶11(Lkb1)缺失,Kras突变的肺癌小鼠的肿瘤明显消退,抑制核因子-κB(NF-κB)信号通路导致p53缺失,Kras突变的肿瘤发展显著减慢。这些发现都为发展非小细胞肺癌患者的靶向治疗提供了有力的支持。  相似文献   

5.
The large majority of today's cancer therapies are based on the removal of solid tumor masses (for example by surgery when possible) and a plethora of chemical or physical treatments such as chemo- and radiotherapy which induce death of particularly sensitive or rapidly growing cells. These approaches are variously combined in order to optimize therapeutic indices. While in some cases, such as childhood leukemia, these treatments may cure patients, it is common knowledge that they are associated with serious side effects. The main conceptual reason for this is that neither cancer cells nor the cancer cause(s) are directly targeted. In addition to a high toxicity and a low quality of life, these traditional therapies can give rise to therapy-induced secondary cancers. Here we will neither discuss the various optimization possibilities nor arguments for and against established therapies. Rather we want to reflect about recent advances, challenges and perspectives of cancer therapeutic concepts which aim at increasing cancer-selectivity. More precisely, we will discuss two such concepts from a cell biological and molecular oncology perspective, namely to (i) target the cause of the cancer and (ii) to (re)activate specific endogenous pathways for cancer cell-selective apoptosis.  相似文献   

6.
7.
8.
9.
10.
11.
Molecular and Cellular Biochemistry - CRC is the third most common cancer occurring worldwide and the second leading cause of cancer deaths. In the year 2020, 1,931,590 new cases of CRC and 935,173...  相似文献   

12.
13.
14.
Apoptosis: a mitochondrial perspective on cell death   总被引:5,自引:0,他引:5  
Mitochondria play an important role in both the life and death of cells. The past 7-8 years have seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Mitochondria have, next to their function in respiration, an important role in apoptotic signaling pathway. Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Apoptosis can be initiated by a wide array of stimuli, including multiple signaling pathways that, for the most part, converge at the mitochondria. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also "gatekeepers" that ultimately determine the fate of the cell. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death. In addition, several Bcl-2 family members and other upstream proteins also contribute to and regulate the apoptosis. In this review, we attempt to summarize our current view of the mechanism that leads to the influx and efflux of many proteins from/to mitochondria during apoptosis.  相似文献   

15.
16.
Receptor Tyrosine Kinases are critical regulators of signal transduction that support cell survival, proliferation, and differentiation. Dysregulation of normal Receptor Tyrosine Kinase function by mutation or other activity-altering event can be oncogenic or can impact the transformed malignant cell so it becomes particularly resistant to stress challenge, have increased proliferation, become evasive to immune surveillance, and may be more prone to metastasis of the tumor to other organ sites. The TAM family of Receptor Tyrosine Kinases (TYRO3, AXL, MERTK) is emerging as important components of malignant cell survival in many cancers. The TAM kinases are important regulators of cellular homeostasis and proper cell differentiation in normal cells as receptors for their ligands GAS6 and Protein S. They also are critical to immune and inflammatory processes. In malignant cells, the TAM kinases can act as ligand independent co-receptors to mutant Receptor Tyrosine Kinases and in some cases (e.g. FLT3-ITD mutant) are required for their function. They also have a role in immune checkpoint surveillance. At the time of this review, the Covid-19 pandemic poses a global threat to world health. TAM kinases play an important role in host response to many viruses and it is suggested the TAM kinases may be important in aspects of Covid-19 biology. This review will cover the TAM kinases and their role in these processes.  相似文献   

17.
Programmed cell death (PCD) is a process aimed at the removal of redundant, misplaced, or damaged cells and it is essential to the development and maintenance of multicellular organisms. In contrast to the relatively well-described cell death pathway in animals, often referred to as apoptosis, mechanisms and regulation of plant PCD are still ill-defined. Several morphological and biochemical similarities between apoptosis and plant PCD have been described, including DNA laddering, caspase-like proteolytic activity, and cytochrome c release from mitochondria. Reactive oxygen species (ROS) have emerged as important signals in the activation of plant PCD. In addition, several plant hormones may exert their respective effects on plant PCD through the regulation of ROS accumulation. The possible plant PCD regulators discussed in this review are integrated in a model that combines plant-specific regulators with mechanisms functionally conserved between animals and plants.  相似文献   

18.
Cancer is universally considered a disease of ageing. Today the management of elderly cancer patients poses many specific problems and it should be revisited in the light of the most recent advances in both diagnosis and treatment of human malignancies. In particular, the potential use of novel therapeutic options, based on therapeutic agents raised against molecular targets (the so called targeted therapy), appears to be promising in this clinical settings especially in view of the limited side-effects. The mainstays of cancer treatment during the twentieth century were surgery, radiation and chemotherapy. However, surgery is not curative in metastatic disease, radiation and chemotherapy are limited by side effects because they can't discriminate between healthy and cancerous cells. When key molecular changes responsible for malignant transformation were identified (e.g. growth factors and their receptors), it was hoped that new targeted agents, by inhibiting cancer-specific pathways, would spare normal cells and thereby offer improved safety benefits and a higher therapeutic index over standard chemotherapeutics. The most common targeted therapies used in clinical practice, i.e. monoclonal antibodies and small molecules, are described.  相似文献   

19.
20.
Wen X  Lin ZQ  Liu B  Wei YQ 《Cell proliferation》2012,45(3):217-224
The caspase family is well characterized as playing a crucial role in modulation of programmed cell death (PCD), which is a genetically regulated, evolutionarily conserved process with numerous links to many human diseases, most notably cancer. In this review, we focus on summarizing the intricate relationships between some members of the caspase family and their key apoptotic mediators, involving tumour necrosis factor receptors, the Bcl-2 family, cytochrome c, Apaf-1 and IAPs in cancer initiation and progression. We elucidate new emerging types of cross-talk between several caspases and autophagy-related genes (Atgs) in cancer. Moreover, we focus on presenting several PCD-modulating agents that may target caspases-3, -8 and -9, and their substrates PARP-1 and Beclin-1, which may help us harness caspase-modulated PCD pathways for future drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号