首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a human melanoma vaccine induced antibody responses in mice that varied significantly from animal to animal. BALB/c mice were immunized to a xenogenic human polyvalent melanoma vaccine that has been used in phase II clinical trials in over 600 patients. Mice were bled biweekly for up to 6 weeks to measure antibody responses. IgG antibody responses to the melanoma vaccine components were detectable within 2 weeks but were much stronger at 4 and 6 weeks. When the pooled sera were further analyzed by Western blot, a complex pattern of antigens was detected. When individual sera from identically immunized mice were assayed by Western blot, a consistent, reproducible pattern of antigen recognition was not seen. Rather, we found significantly different antibody responses among the mice. Both the intensity of antibody responses and the pattern of antigens recognized varied from animal to animal. Although there appeared to be immunodominant antigens that produced antibody responses in most mice, no single antigen induced antibody responses in all mice. These results demonstrate that polyvalent vaccines induce heterogeneous antibody responses in mice treated identically. Analysis of the response of selected melanoma patients immunized to the same vaccine revealed similar antibody responses to the antigens in the melanoma vaccine. Heterogeneity may hamper interpretation of vaccine immunogenicity and relevant tumor antigens in humans.  相似文献   

2.
Immunotherapeutic approaches to cancer should focus on novel undertakings that modulate immune responses by synergistic enhancement of anti-tumor immunological parameters. Cancer vaccines should preferably be composed of multiple defined tumor antigen specific B- and T-cell epitopes. The main focus of this article is to briefly review the present status of Her-2/neu vaccine strategies and to describe the innovative strategies developed in my laboratory for a vaccine against HER-2/neu (ErbB-2) with emphasis on the humoral arm of the immune response. Elucidating the underlining mechanisms of anti-tumor effects elicited by peptide vaccines against a self-protein is a requirement for developing an immunotherapeutic strategy that might be effective in human cancer vaccines. Our approach entails the identification of biologically relevant epitopes, establishing relevant in vitro assays for monitoring vaccine efficacy, devising strategies to engineer conformationally dependent sequences, developing highly immunogenic vaccines for an outbred population and delivering the immunogen/vaccine in a safe and efficacious vehicle, utilizing transgenic animal models for assessing tumor development, and developing challenge models using transplantable tumors to study efficacy of vaccine constructs. We have developed a multi-HER-2/neu B-cell epitope approach and shown in preclinical studies that immunization with a combination of two B-cell epitope was more effective in preventing mammary tumors than a single epitope. We have translated that work to the clinic (OSU 0105) in an FDA approved, NCI sponsored “Phase 1 Active Immunotherapy trial with Chimeric and Multi-epitope based peptide vaccine targeting HER-2 oncoprotein and nor-MDP adjuvant in patients with metastatic and/or recurrent solid tumors” at the James Cancer Hospital at the Ohio State University. The correlation between overexpression of HER-2/neu and up-regulation of VEGF has been demonstrated in breast cancer patients. Thus, blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. The hypothesis that combination of anti-angiogenic therapy and tumor immunotherapy of cancer may be synergistic is an important future goal. In this review, I will discuss insights into our preclinical studies that might aid in the design of the next generation of cancer vaccines and become an integrated component of prophylactic/preventive and therapeutic approach.  相似文献   

3.
Over the last few years, anticancer immunotherapy has emerged as a new exciting area for controlling tumors. In particular, vaccination using synthetic tumor-associated antigens (TAA), such as carbohydrate antigens hold promise for generating a specific antitumor response by targeting the immune system to cancer cells. However, development of synthetic vaccines for human use is hampered by the extreme polymorphism of human leukocyte-associated antigens (HLA). In order to stimulate a T-cell dependent anticarbohydrate response, and to bypass the HLA polymorphism of the human population, we designed and synthesized a glycopeptide vaccine containing a cluster of a carbohydrate TAA B-cell epitope (Tn antigen: alpha-GalNAc-Ser) covalently linked to peptides corresponding to the Pan DR 'universal' T-helper epitope (PADRE) and to a cytotoxic T lymphocyte (CTL) epitope from the carcinoembryonic antigen (CEA). The immunogenicity of the construct was evaluated in outbred mice as well as in HLA transgenic mice (HLA-DR1, and HLA-DR4). A strong T-cell dependent antibody response specific for the Tn antigen was elicited in both outbred and HLA transgenic mice. The antibodies induced by the glycopeptide construct efficiently recognized a human tumor cell line underlying the biological relevance of the response. The rational design and synthesis of the glycopeptide construct presented herein, together with its efficacy to induce antibodies specific for native tumor carbohydrate antigens, demonstrate the potential of a such synthetic molecule as an anticancer vaccine candidate for human use.  相似文献   

4.
The growing pandemic of human tuberculosis has not been affected significantly by the widespread use of the only currently available vaccine, bacille Calmette Guerin. Bacille Calmette Guerin protects uniformly against serious paediatric forms of tuberculosis and against adult pulmonary tuberculosis in some parts of the world, but there are clearly populations in high-burden countries which do not benefit from the current vaccination regimen. New tuberculosis vaccines will be essential for the ultimate control of this ancient disease. Research over the past 10 years has produced literally hundreds of new tuberculosis vaccine candidates representing all of the major vaccine design strategies; protein/peptide vaccines in adjuvants, DNA vaccines, naturally and rationally attenuated strains of mycobacteria, recombinant mycobacteria and other living vaccine vectors expressing genes coding for immunodominant mycobacterial antigens, and non-peptide vaccines. Many of these vaccines have been tested for immunogenicity and protective efficacy in mouse and guinea pig models of low-dose pulmonary tuberculosis. In addition, alternative routes of tuberculosis vaccine delivery (e.g. oral, respiratory, gene gun) and various combinations of priming or boosting an experimental vaccine with bacille Calmette Guerin have been examined in relevant animal models. One of the most promising of these vaccines is currently in Phase I trials in human subjects, and others are expected to follow in the near future. This review will summarise the most recent progress made toward the development and preclinical evaluation of novel vaccines for human tuberculosis.  相似文献   

5.
After more than 15 years of experimentation, DNA vaccines have become a promising perspective for tumour diseases, and animal models are widely used to study the biological features of human cancer progression and to test the efficacy of vaccination protocols. In recent years, immunisation with naked plasmid DNA encoding tumour-associated antigens or tumour-specific antigens has revealed a number of advantages: antigen-specific DNA vaccination stimulates both cellular and humoral immune responses; multiple or multi-gene vectors encoding several antigens/determinants and immune-modulatory molecules can be delivered as single administration; DNA vaccination does not induce autoimmune disease in normal animals; DNA vaccines based on plasmid vectors can be produced and tested rapidly and economically. However, DNA vaccines have shown low immunogenicity when tested in human clinical trials, and compared with traditional vaccines, they induce weak immune responses. Therefore, the improvement of vaccine efficacy has become a critical goal in the development of effective DNA vaccination protocols for anti-tumour therapy. Several strategies are taken into account for improving the DNA vaccination efficacy, such as antigen optimisation, use of adjuvants and delivery systems like electroporation, co-expression of cytokines and co-stimulatory molecules in the same vector, different vaccination protocols. In this review we discuss how the combination of these approaches may contribute to the development of more effective DNA vaccination protocols for the therapy of lymphoma in a mouse model.  相似文献   

6.
Synthetic antigens have been shown, in experimental models, to induce protective immunity against a variety of pathogens. These studies have demonstrated that, due to their low immunogenicity, these synthetic antigens required conjugation to carrier molecules. Therefore, the choice of appropriate carriers for human immunization by future synthetic vaccines is a major issue. Tetanus toxoid is generally considered to be an effective potential carrier devoid of side-effects. However, the present study performed in mice with two synthetic vaccine models demonstrates that the immune response against the synthetic epitopes conjugated to tetanus toxoid can be suppressed by pre-existing immunity against this same carrier. Because most humans have been exposed to this antigen, this effect may have important implications for the development of synthetic vaccines.  相似文献   

7.
This review provides an overview of studies employing particle-mediated epidermal delivery (PMED) or the gene gun to administer DNA vaccines for infectious diseases in preclinical studies employing large animal models and in human clinical trials. It reviews the immunogenicity and protective efficacy of PMED DNA vaccines in nonhuman primates and swine and studies that have directly compared the effectiveness of PMED in these large animal models to existing licensed vaccines and intramuscular or intradermal delivery of DNA vaccines with a needle. Various clinical trials employing PMED have been completed and an overview of the immunogenicity, safety, and tolerability of this approach in humans is described. Finally, efforts currently in progress for commercial development of particle-mediated DNA vaccines are discussed.  相似文献   

8.
The intentional use of Bacillus anthracis, the etiological agent of anthrax, as a bioterrorist weapon in late 2001 made our society acutely aware of the importance of developing, testing, and stockpiling adequate countermeasures against biological attacks. Biodefense vaccines are an important component of our arsenal to be used during a biological attack. However, most of the agents considered significant threats either have been eradicated or rarely infect humans alive today. As such, vaccine efficacy cannot be determined in human clinical trials but must be extrapolated from experimental animal models. This article reviews the efficacy and immunogenicity of human anthrax vaccines in well-defined animal models and the progress toward developing a rugged immunologic correlate of protection. The ongoing evaluation of human anthrax vaccines will be dependent on animal efficacy data in the absence of human efficacy data for licensure by the U.S. Food and Drug Administration.  相似文献   

9.
The intentional use of Bacillus anthracis, the etiological agent of anthrax, as a bioterrorist weapon in late 2001 made our society acutely aware of the importance of developing, testing, and stockpiling adequate countermeasures against biological attacks. Biodefense vaccines are an important component of our arsenal to be used during a biological attack. However, most of the agents considered significant threats either have been eradicated or rarely infect humans alive today. As such, vaccine efficacy cannot be determined in human clinical trials but must be extrapolated from experimental animal models. This article reviews the efficacy and immunogenicity of human anthrax vaccines in well-defined animal models and the progress toward developing a rugged immunologic correlate of protection. The ongoing evaluation of human anthrax vaccines will be dependent on animal efficacy data in the absence of human efficacy data for licensure by the U.S. Food and Drug Administration.  相似文献   

10.
Abstract

Specific active immunotherapy employing crude or purified tumour cell extracts containing tumour-associated antigens (TAA) is of interest as a therapeutic modality for cancer treatment. Weak immunogenicity of TAA preparations and difficulties associated with the extraction of TAA from tumour cells have been major problems, but may be overcome by various strategies. In this context, we studied the potential of well-characterized reconstituted tumour cell membranes to induce protective tumour immunity. The weakly immunogenic SL2 lymphosarcoma syngeneic to DBA/2 mice was used as a tumour model. It was found that immunization with reconstituted membranes induces specific and systemic tumour immunity. Presentation of TAA on a membrane structure was essential. The tumour rejection potency of the reconstituted membranes was dramatically enhanced by the addition of muramyl tripeptide phosphatidyl-ethanolamine (MTP-PE) and interleukin-2. In addition, the effect of liposome encapsulation of IL-2 on its immunomodulating effect was monitored. Finally, insight was obtained into the immunological basis of the protective tumour immunity. On the basis of these findings, suggestions are made to improve liposome-based cancer vaccines.  相似文献   

11.
Previously using a series of monovalent vaccines, we demonstrated that the optimal method for inducing an antibody response against cancer cell-surface antigens is covalent conjugation of the antigens to keyhole limpet hemocyanin (KLH) and the use of a saponin adjuvant. We have prepared a heptavalent-KLH conjugate vaccine containing the seven epithelial cancer antigens GM2, Globo H, Lewis(y), TF(c), Tn(c), STn(c), and glycosylated MUC1. In preparation for testing this vaccine in the clinic, we tested the impact on antibody induction of administering the individual conjugates plus adjuvant compared with a mixture of the seven conjugates plus adjuvant, and of several variables thought to augment immunogenicity. These include approaches for decreasing suppressor cell activity or increasing helper T-lymphocyte activity (low dose cyclophosphamide or anti-CTLA-4 MAb), different saponin adjuvants at various doses (QS-21 and GPI-0100), and different methods of formulation (lyophilization and use of polysorbate 80). We find that: (1). Immunization with the heptavalent-KLH conjugate plus GPI-0100 vaccine induces antibodies against the seven antigens of comparable titer to those induced by the individual-KLH conjugate vaccines, high titers of antibodies against Tn (median ELISA titer IgM/IgG 320/10240), STn (640/5120), TF (320/10240), MUC1 (80/20480), and globo H (640/40); while lower titers of antibodies against Lewis(y)()(160/0) and only occasional antibodies against GM2 are induced. (2). These antibodies reacted with the purified synthetic antigens by ELISA, and with naturally expressed antigens on the cancer cell surface by FACS. (3). None of the approaches for further altering the suppressor cell/helper T-cell balance nor changes to the standard formulation by lyophilization or use of polysorbate 80 had any impact on antibody titers. (4). An optimal dose of saponin adjuvant, QS-21 (50 microg) or GPI-0100 (1000 microg), is required for optimal antibody titers. This heptavalent vaccine is sufficiently optimized for testing in the clinic.  相似文献   

12.
Application of chitosan microspheres for nasal delivery of vaccines   总被引:3,自引:0,他引:3  
Nasal vaccines offer several benefits, such as highly vascular mucous membranes, low enzymatic degradation compared to oral vaccines, and greater acceptability to patients. Nasal vaccines, however, have to overcome several limitations, including mucociliary clearance and the inefficient uptake of soluble antigens. Therefore, nasal vaccines require potent adjuvants and delivery systems to enhance their immunogenicity and to protect their antigens. Chitosan is a cheap, biocompatible, biodegradable, mucoadhesive, and nontoxic natural polymer. Chitosan microspheres have been investigated to determine whether they allow the controlled release of drugs and vaccines. They have figured in various studies on the vaccine delivery system through the nasal route. Several researchers have developed modified chitosan microspheres through their concomitant use with adjuvants or immunomodulators for an additive and a synergistic effect, and through the mannosylation of chitosan for receptor-mediated targeting antigen-presenting cells. The results of the recent researches on chitosan microspheres used as a nasal vaccine delivery system are discussed in this review.  相似文献   

13.
A plant based high fidelity vaccine production system is being developed with emphasis on producing antigens capable of being orally delivered in multivalent or subunit plant packets. Plant-based edible vaccines may provide an attractive, safe and inexpensive alternative to conventional vaccine production. Edible plant tissues are not normally antigenic in nature. However, foreign antigens from common infectious organisms like hepatitis-B virus (HBV) can be produced along with naturally occurring storage proteins in DNA-transformed plants. Upon administration via the oral route, these transgenic plant tissues may mobilize the protective humoral and mucosal immune responses to challenge the natural infectious agent. When tobacco, carrot and rice plants were transformed with the truncated version of the HBV nucleocapsid gene expression construct, non-infective hepatitis B viral core particles were observed via electron microscopy. A second plant codon-optimised HBV expression construct was designed that included the extensin signal sequence for augmented HBV particle accumulation. Upon transformation of tobacco plants with the codon-optimised construct, over 4 times more transgenic plants with high levels of expression of the HBV nucleocapsid protein were generated in comparison with a similar vector containing the unmodified wild-type HBV gene codon sequence. Further analysis via Western blotting confirmed the presence of the viral antigen in the total protein extracts from transgenic tobacco leaves and seeds. Electron microscopy showed that the expressed protein self-assembled into viral-like particles of 25–30 nm in diameter. To develop an edible subunit vaccine in plant seeds, a third plant transformation construct was used for the synthesis of the human cytomegalovirus glycoprotein B (HCMV gB) subunit. The gB protein derived from tobacco seeds retained critical structural features including epitopes for neutralizing antibodies and was targeted to the protein storage vesicles of tobacco seed endosperm. Two different strains of mice were orally immunized with tobacco seeds containing low concentrations of HCMV gB, with varying dosages, but without adjuvant. No anti-gB response was detected in intestinal or serum samples. However, a systemic immune response to normal tobacco seed proteins was observed in both strains of mice. While higher expression levels of antigens in seeds must be achieved, seeds may provide an effective and immunostimulatory vehicle for delivering edible vaccines to the intestinal mucosa. One of the outstanding challenges includes defining optimum conditions of antigen presentation, dosage and immunization schedules that will induce strong mucosal and/or systemic immune responses in heterogeneous populations. Here we review the different strategies being employed to produce specific oral antigens in plant tissues.  相似文献   

14.
Progress in Brucella vaccine development   总被引:2,自引:0,他引:2  
Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines.  相似文献   

15.
CD8+ T cells have been implicated as critical effector cells in protection against the pre-erythrocytic stage of malaria in mice and humans following irradiated sporozoite immunization. Immunization experiments in animal models by several investigators have suggested different strategies for vaccination against malaria and many of the targets from liver stage malaria antigens have been shown to be immunogenic and to protect mice from the sporozoite challenge. Several prime/boost protocols with replicating vectors, such as vaccinia/influenza, with non-replicating vectors, such as recombinant particles derived from yeast transposon (Ty-particles) and modified vaccinia virus Ankara, and DNA, significantly enhanced CD8+ T cell immunogenicity and also the protective efficacy against the circumsporosoite protein of Plasmodium berghei and P. yeti. Based on these experimental results the development of a CD8+ T cell inducing vaccine has moved forward from epitope identification to planning stages of safety and immunogenicity trials of candidate vaccines.  相似文献   

16.
Neither GMP malaria antigens nor GMP vaccines have been compared for efficacy in monkeys and humans. It is too risky to base categorical (go/no go) development decisions on results obtained using partially characterized (non-GMP) antigens, adjuvants that are too toxic for human use or unvalidated primate models. Such practices will lead to serious errors (e.g. failure to identify and stop flawed efforts, rejection of effective vaccine strategies) and unjustifiable delays. Successful malaria vaccine development will emphasize definitive field trials in populations at risk of malaria to define and improve vaccine efficacy.  相似文献   

17.
Anti-idiotype (Id) vaccine therapy has been tested and shown to be effective, in several animal models, for triggering the immune system to induce specific and protective immunity against bacterial, viral and parasitic infections. The administration of anti-Id antibodies as surrogate tumor-associated antigens (TAA) also represents another potential application of the concept of the Id network. Limited experience in human trials using anti-Id to stimulate immunity against tumors has shown promising results. In this “counterpoint” article, we discuss our own findings showing the potential of anti-Id antibody vaccines to be novel therapeutic approaches to various human cancers and also discuss where anti-Id vaccines may perform better than traditional multiple-epitope antigen vaccines. Received: 27 December 1999 / Accepted: 27 January 2000  相似文献   

18.
DNA vaccines     
Within the last decade bacterial plasmids encoding foreign antigens have revolutionized vaccine design. Although no DNA vaccine has yet been approved for routine human or veterinary use, the potential of this vaccine modality has been demonstrated in experimental animal models. Plasmid DNA vaccination has shown efficacy against viral, bacterial and parasitic infections, modulated the effects of autoimmune and allergic diseases and induced control over cancer progression. With a better understanding of the basic immune mechanisms that govern induction of protective or curative immune responses, plasmid DNA vaccines and their mode of delivery are continuously being optimized. Because of the simplicity and versatility of these vaccines, various routes and modes of delivery are possible to engage the desired immune responses. These may be T or B effector cell responses able to eliminate infectious agents or transformed cells. DNA vaccines may also induce an immunoregulatory/modulatory or immunosuppressive (tolerizing) response that interferes with the differentiation, expansion or effector functions of B and T cells. In this sense a DNA vaccine may be thought of as a 'negative' vaccine. Pre-clinical and initial small-scale clinical trials have shown DNA vaccines in either of these modes to be safe and well tolerated. Although DNA vaccines induce significant immune responses in small animal trials their efficacy in humans has so far been less promising thus necessitating additional optimizations of this novel vaccine approach.  相似文献   

19.
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1–V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.  相似文献   

20.
Synthetic antigens employed in experimental synthetic vaccines are generally small haptenic peptides. Therefore, effective immunization with these antigens usually requires the use of an immunogenic carrier. Tetanus toxoid has been proposed for use as a carrier in future synthetic vaccines due to its high immunogenicity and acceptance for human use. Previous studies employing standard hapten/carrier systems such as DNP/KLH have demonstrated, however, that an epitope-specific suppression occurs when mice previously primed with carrier are subsequently immunized with an haptenic epitope conjugated to the same carrier. These same studies have shown that Bordetella pertussis vaccine administered at the time of carrier priming abrogates epitopic suppression. In the present investigation, epitopic suppression was studied in a synthetic vaccine model employing tetanus toxoid as a carrier. Results from these studies indicated that mice primed with tetanus toxoid 1 month before immunization with a peptide-tetanus toxoid conjugate exhibited enhanced secondary anti-tetanus toxin responses but decreased anti-peptide responses. Furthermore, injection of pertussis vaccine or purified B. pertussis toxin or endotoxin at the time of carrier priming could block the establishment of epitopic suppression. Administration of B. pertussis components enhanced antibody responses to both the carrier and the synthetic peptides as compared with responses of control animals. In addition, administration of an adjuvant-active nonpyrogenic derivative of muramyl dipeptide. Murabutide, with carrier priming reduced epitopic suppression of anti-peptide responses. B. pertussis toxin or endotoxin administered to mice previously suppressed by carrier priming with the first injection of carrier-peptide conjugate overcame epitopic suppression with resultant titers of anti-peptide antibody equal to or greater than nonsuppressed controls. These results suggest that the use of adjuvants with future synthetic vaccines may contribute the additional advantage of overcoming epitopic suppression, thus permitting the use of common, well-tolerated carrier systems such as tetanus toxoid in synthetic vaccine preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号