首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The clinical hallmarks of hibernating myocardium include hypocontractility while retaining an inotropic reserve (using dobutamine echocardiography), having normal or increased [18F]fluoro-2-deoxyglucose-6-phosphate (18FDG6P) accumulation associated with decreased coronary flow [flow-metabolism mismatch by positron emission tomography (PET)], and recovering completely postrevascularization. In this study, we investigated an isolated rat heart model of hibernation using experimental equivalents of these clinical techniques. Rat hearts (n = 5 hearts/group) were perfused with Krebs-Henseleit buffer for 40 min at 100% flow and 3 h at 10% flow and reperfused at 100% flow for 30 min (paced at 300 beats/min throughout). Left ventricular developed pressure fell to 30 +/- 8% during 10% flow and recovered to 90 +/- 7% after reperfusion. In an additional group, this recovery of function was found to be preserved over 2 h of reperfusion. Electron microscopic examination of hearts fixed at the end of the hibernation period demonstrated a lack of ischemic injury and an accumulation of glycogen granules, a phenomenon observed clinically. In a further group, hearts were challenged with dobutamine during the low-flow period. Hearts demonstrated an inotropic reserve at the expense of increased lactate leakage, with no appreciable creatine kinase release. PET studies used the same basic protocol in both dual- and globally perfused hearts (with 250MBq 18FDG in Krebs buffer +/- 0.4 mmol/l oleate). PET data showed flow-metabolism "mismatch;" whether regional or global, 18FDG6P accumulation in ischemic tissue was the same as (glucose only) or significantly higher than (glucose + oleate) control tissue (0.023 +/- 0.002 vs. 0.011 +/- 0.002 normalized counts. s-1x g-1x min-1, P < 0.05) despite receiving 10% of the flow. This isolated rat heart model of acute hibernation exhibits many of the same characteristics demonstrated clinically in hibernating myocardium.  相似文献   

3.
4.
Formation of a dense microtubule network that impedes cardiac contraction and intracellular transport occurs in severe pressure overload hypertrophy. This process is highly dynamic, since microtubule depolymerization causes striking improvement in contractile function. A molecular etiology for this cytoskeletal alteration has been defined in terms of type 1 and type 2A phosphatase-dependent site-specific dephosphorylation of the predominant myocardial microtubule-associated protein (MAP)4, which then decorates and stabilizes microtubules. This persistent phosphatase activation is dependent upon ongoing upstream activity of p21-activated kinase-1, or Pak1. Because cardiac β-adrenergic activity is markedly and continuously increased in decompensated hypertrophy, and because β-adrenergic activation of cardiac Pak1 and phosphatases has been demonstrated, we asked here whether the highly maladaptive cardiac microtubule phenotype seen in pathological hypertrophy is based on β-adrenergic overdrive and thus could be reversed by β-adrenergic blockade. The data in this study, which were designed to answer this question, show that such is the case; that is, β(1)- (but not β(2)-) adrenergic input activates this pathway, which consists of Pak1 activation, increased phosphatase activity, MAP4 dephosphorylation, and thus the stabilization of a dense microtubule network. These data were gathered in a feline model of severe right ventricular (RV) pressure overload hypertrophy in response to tight pulmonary artery banding (PAB) in which a stable, twofold increase in RV mass is reached by 2 wk after pressure overloading. After 2 wk of hypertrophy induction, these PAB cats during the following 2 wk either had no further treatment or had β-adrenergic blockade. The pathological microtubule phenotype and the severe RV cellular contractile dysfunction otherwise seen in this model of RV hypertrophy (PAB No Treatment) was reversed in the treated (PAB β-Blockade) cats. Thus these data provide both a specific etiology and a specific remedy for the abnormal microtubule network found in some forms of pathological cardiac hypertrophy.  相似文献   

5.
Immature hypophysectomized, estrogen-treated rats were used to study the regulation of luteinization. Particular attention was focused on the potential role of the oocyte in this process. Rats were injected for 2 days with follicle-stimulating hormone (FSH) to stimulate follicular development. Within 48 h following FSH treatment, many follicles became luteinized, as determined by morphometric analysis. This luteinization occurred in the absence of detectable levels of luteinizing hormone (LH). The number of follicles undergoing luteinization was dependent on the FSH dose. In addition, ovulation occurred in some of the animals receiving the highest doses of FSH (3-micrograms or 5-micrograms injections). The majority of follicles undergoing luteinization or ovulation were greater than 400 microns in diameter. Luteinized follicles exhibited positive reactivity for cholesterol side-chain cleavage enzyme, 3 beta-hydroxysteroid dehydrogenase, lipid, and alkaline phosphatase, which was similar to that found in corpora lutea of the cycle. Serum progesterone (P0) and 20 alpha-hydroxypregn-4-en-one levels were elevated in animals with luteinized follicles, especially in those animals that also underwent ovulation. Morphological evaluation of oocytes showed that the majority of luteinized follicles contained a degenerating oocyte. Oocyte degeneration was highly correlated (r = 0.94) to luteinization. These results demonstrate that luteinization and ovulation can occur in the FSH/estrogen-primed hypophysectomized rats in the absence of detectable serum LH. Furthermore, LH-independent luteinization was strongly correlated to degenerative changes in the oocyte. These results provide new evidence to support the concept that the oocyte may be an intraovarian regulator of luteinization.  相似文献   

6.
[4-14C] Oestradiol-17β was perfused through isolated brains of male and ovariectomized female rats. Two different perfusion media were used. The uptake of oestradiol-17β was higher in female brains, the highest concentrations being found in the hypophysis and hypothalamus. Oestradiol-17β was metabolized to a greater extent by female brains, the most important metabolite being oestrone. Additionally, 2-hydroxyoestradiol-17β, 6ζ-hydroxyoestradiol-17β, and 7α-hydroxyoestradiol-17β were found; 7α-hydroxyoestrone and another polar metabolite could not be definitely identified. Quantitatively, 2-hydroxylation was no more important than hydroxylation at C atom 6 or 7.  相似文献   

7.
The biological function of juvenile leaves pigmented with anthocyanin is poorly understood. The role anthocyanins play in UV protection was assessed in juvenile leaves of two Syzygium species (S. luehmannii and S. wilsonii) which contain high anthocyanin concentrations. HPLC was used to separate UV-absorbing anthocyanins from other soluble UV-absorbing phenolic compounds. The isolated anthocyanins (predominantly malvidin-3,5-diglucoside) contributed little to the total absorbance of UV-A and UV-8 radiation. This was because the non-acylated anthocyanins only effectively absorbed shortwave UV-B radiation and the strong absorbance by other compounds. These results suggest that the UV protection hypothesis is not valid for anthocyanins in juvenile Syzygium leaves.  相似文献   

8.
In order to understand the functional significance of Na,K-ATPase subunits as well as their isoenzymes, a precise subcellular localization of these in the myocyte is a crucial prerequisite. Cytochemical, immunofluorescence, preembedding immunogold and horse radish peroxidasediaminobenzidine methods, demonstrated 1 isoenzyme immunoreactivity on the sarcolemma, T-tubules and the subsarcolemmal cisterns of the adult cardiac myocytes. Cytochemically, ouabain resistant Na,K-ATPase precipitate was localized only in the subsarcolemmal cisterns and junctional sarcoplasmic reticulum. For 2 isoenzyme, immunoreactivity was demonstrated on the sarcolemma as well as in all areas of the myocytes in particularly a close proximation to the sarcoplasmic reticulum and microsomes. For 3 isoenzyme, only a weak insignificant signal was noted on the sarcolemma, intercalated disc and sarcoplasm. It is suggested that cytochemical ouabain resistant precipitate present in subsarcolemmal cisterns and junctional sarcoplasmic reticulum represent 1 isoenzyme of Na,K-ATPase. A differential as well as unique localization of subunit isoenzymes of Na,K-ATPase in specific structures of cardiac myocytes may suggest importance in physiological function at these sites.  相似文献   

9.
Does the inositol tris/tetrakisphosphate pathway exist in rat heart?   总被引:2,自引:0,他引:2  
D Renard  J Poggioli 《FEBS letters》1987,217(1):117-123
Appearance of two isomers of inositol trisphosphate (InsP3) was observed when [3H]inositol prelabelled rat heart ventricles were stimulated for 10 and 30 s with noradrenaline. In contrast, inositol tetrakisphosphate (InsP4) could not be detected. However the existence of the inositol tris/tetrakisphosphate pathway was demonstrated by studying [3H]inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) metabolism in a soluble fraction of rat heart. There, [3H]Ins-1,4,5-P3 was phosphorylated to form [3H]Ins-1,3,4,5-P4. Raising [Ca2+] from 1 nM to 1 microM increased InsP3 kinase activity by 2-fold (EC50 for Ca2+ approx. 56 nM). This effect appeared to be due to an increase of the apparent Vmax of the enzyme while the apparent Km was unchanged.  相似文献   

10.
The in vitro binding of α-tocopherol to microsomes of lung, liver, heart and brain of the rat was studied with the insoluble tocopherol ligand presented as a complex with bovine serum albumin. Under these conditions, all microsomes showed nonsaturable binding of α-tocopherol and the amount bound to microsomes was linearly proportional to the concentration of albumin-complexed tocopherol. Increasing the amount of α-tocopherol bound to microsomes in this manner reduced the extent of lipid peroxidation induced by added ferrous iron. The apparent affinities of the microsomes for α-tocopherol, as indicated by the amount bound at a given concentration of albumin-complexed tocopherol, decreased in the order brain > liver ≈ heart > lung. The differences in affinity did not correlate with total fatty acid content (r = − 0.39), total unsaturated fatty acid content (r = − 0.26), or with the content of fatty acids containing two or more double bonds (r = − 0.01). A high positive correlation was found with the content of fatty acids containing three or more double bonds (r = + 0.96). Since lung microsomes contain approx. 6-times the tocopherol levels of liver and brain and about twice that of heart microsomes, these results show that the in vivo levels of microsomal tocopherol do not reflect microsomal affinity for this biological antioxidant.  相似文献   

11.
The inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), is thought to negatively regulate the critical insulin signaling protein Akt/PKB. Knockdown of the IP7-generating inositol hexakisphosphate kinase 1 (IP6K1) results in a concomitant increase in signaling through Akt/PKB in most cell types so far examined. Total in vivo knockout of IP6K1 is associated with a phenotype resistant to high-fat diet, due to enhanced Akt/PKB signaling in classic insulin regulated tissues, counteracting insulin resistance. In contrast, we have shown an important positive role for IP6K1 in insulin exocytosis in the pancreatic β-cell. These cells also possess functional insulin receptors and the feedback loop following insulin secretion is a key aspect of their normal function. Thus we examined the effect of silencing IP6K1 on the activation of Akt/PKB in β-cells. Silencing reduced the glucose-stimulated increase in Akt/PKB phosphorylation on T308 and S473. These effects were reproduced with the selective pan-IP6K inhibitor TNP. The likely explanation for IP7 reduction decreasing rather than increasing Akt/PKB phosphorylation is that IP7 is responsible for generating the insulin signal, which is the main source of Akt/PKB activation. In agreement, insulin receptor activation was compromised in TNP treated cells. To test whether the mechanism of IP7 inhibition of Akt/PKB still exists in β-cells, we treated them at basal glucose with an insulin concentration equivalent to that reached during glucose stimulation. TNP potentiated the Akt/PKB phosphorylation of T308 induced by exogenous insulin. Thus, the IP7 regulation of β-cell Akt/PKB is determined by two opposing forces, direct inhibition of Akt/PKB versus indirect stimulation via secreted insulin. The latter mechanism is dominant, masking the inhibitory effect. Consequently, pharmacological strategies to knock down IP6K activity might not have the same positive output in the β-cell as in other insulin regulated tissues.  相似文献   

12.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

13.
Tumor necrosis factor-alpha has been shown to rapidly increase the phosphorylation of three 28 kDa proteins in bovine aortic endothelial cells but not in L929 cells. Tumor necrosis factor-alpha induces the necrosis of the latter cells but not of the former. Arsenite enhanced the phosphorylation of the same 28kDa proteins as tumor necrosis factor-alpha in the endothelial cells. As stress proteins often play a protective role, we suggest that the phosphorylation of these proteins in endothelial cells may be responsible for the resistance of these cells to tumor necrosis factor-alpha.  相似文献   

14.
The 25-hydroxylations of [(3)H]cholecalciferol and 1alpha-hydroxy[(3)H]cholecalciferol in perfused rat liver were compared. Results showed that about twice as much 1alpha(OH)D(3) (1alpha-hydroxycholecalciferol) was incorporated into the liver as cholecalciferol. 25-Hydroxy[(3)H]cholecalciferol and 1alpha-25-dihydroxy[(3)H]cholecalciferol were not incorporated significantly. Livers isolated from vitamin D-deficient rats formed the 25-hydroxy derivatives of cholecalciferol and 1alpha(OH)D(3) respectively linearly with time for at least 120min. The rate of 1alpha,25(OH)(2)D(3) (1alpha,25-dihydroxycholecalciferol) production increased exactly 10-fold on successive 10-fold increases in the dose of 1alpha(OH)D(3), suggesting that hepatic 25-hydroxylation of 1alpha(OH)D(3) is not under metabolic control. On the other hand, the rate of conversion of cholecalciferol into 25(OH)D(3) (25-hydroxycholecalciferol) did not increase linearly with increase in the amount of cholecalciferol in the perfusate. The 25-hydroxylation of cholecalciferol seemed to proceed at a similar rate to that of 1alpha(OH)D(3) at doses of less than 1nmol, but with doses of more than 2.5nmol, the conversion of cholecalciferol into 25(OH)D(3) became much less efficient, though the linear relation between the amounts of substrate and product was maintained. A reciprocal plot of data on the 25-hydroxylation of cholecalciferol gave two K(m) values of about 5.6nm and 1.0mum, whereas that for the 25-hydroxylation of 1alpha(OH)D(3) gave a single K(m) value of about 2.0mum. These results suggest that there are two modes of 25-hydroxylation of cholecalciferol in the liver, which seem to be closely related to the mechanism of control of 25(OH)D(3) production by the liver.  相似文献   

15.
Little attention has been devoted to the expression of CART during development. However, a few studies in the central nervous system and periphery provide a clear indication that these peptides may play significant roles during histogenesis, and may have trophic actions.  相似文献   

16.
《BBA》1986,850(2):249-255
The effect of pH and substrates on the binding of radiolabelled α-cyanocinnamate to mitochondria and submitochondrial particles has been investigated. It has been found that the binding is strongly influenced by the pH of the medium (it decreases on increasing the pH of the medium). The inhibition of pyruvate oxidation by this inhibitor follows the same pH dependence. The pH affects only the affinity of the α-cyanocinnamate binding site without changing their total number. A similar pH dependence has been found in inside-out submitochondrial particles where the binding sites are directly accessible. The quantitative parameters of the binding of α-cyanocinnamate in submitochondrial particles have been determined. The binding can be prevented or displaced by pyruvate and other substrates of the carrier. The turnover number for pyruvate transport in rat-heart mitochondria has been determined.  相似文献   

17.
Post-conditioning by repetitive cycles of reperfusion/ischemia after prolonged ischemia protects the heart from infarction. The objectives of this study were: Are kinases (PI3-kinase, mTOR, and GSK-3β) involved in the signaling pathway of post-conditioning? Does post-conditioning result in a diminished necrosis or apoptosis? In open chest rats the infarct size was determined after 30 min of regional ischemia and 30 min of reperfusion using propidium iodide and microspheres. Post-conditioning was performed by three cycles of 30 s reperfusion and reocclusion each, immediately upon reperfusion. PI3-kinase and mTOR were blocked using wortmannin (0.6 mg/kg) or rapamycin (0.25 mg/kg), respectively. The phosphorylation of GSK-3β and p70S6K was determined with phospho-specific antibodies. TUNEL staining and detection of apoptosis-inducing factor (AIF) were used for the determination of apoptosis. Control hearts had an infarct size of 49 ± 3%, while post-conditioning significantly reduced it to 29 ± 3% (P < 0.01). Wortmannin as well as rapamycin completely blocked the infarct size reduction of post-conditioning (51 ± 2% and 54 ± 5%, respectively). Western blot analysis revealed that post-conditioning increased the phosphorylation of GSK-3β by 2.3 times (P < 0.01), and this increase could be blocked by wortmannin, a PI3-kinase inhibitor. Although rapamycin blocked the infarct size reduction, phosphorylation of p70S6K was not increased in post-conditioned hearts. After 2 h of reperfusion, the post-conditioned hearts had significantly fewer TUNEL-positive nuclei (35 %) compared to control hearts (53%; P < 0.001). AIF was equally reduced in post-conditioned rat hearts (P < 0.05 vs. control). Infarct size reduction by ischemic post-conditioning of the in vivo rat heart is PI3-kinase dependent and involves mTOR. Furthermore, GSK-3β, which is thought to be a regulator of the mPTP, is part of the signaling pathway of post-conditioning. Finally, apoptosis was inhibited by post-conditioning, which was shown by two independent methods. The role of apoptosis and/or autophagy in post-conditioning has to be further elucidated to find therapeutic targets to protect the heart from the consequences of acute myocardial infarction.  相似文献   

18.
To identify the role of Ca2+ mobilization from intracellular pool(s) in the action of α-adrenergic agonist, the effects of dantrolene on phenylephrine-induced glycogenolysis were investigated in perfused rat liver. Dantrolene (5·10−5 M) inhibited both glycogenolysis and 45Ca efflux induced by 5·10−7 M phenylephrine. The inhibition by dantrolene was observed in the presence and absence of perfusate calcium. In contrast, dantrolene did not inhibit glycogenolysis induced by glucagon. To confirm the specificity of dantrolene action on calcium release in liver, experiments were also carried out using isolated hepatocytes. Dantrolene did not affect phenylephrine-induced production of inositol 1,4,5-trisphosphate. The compound did inhibit a rise in cytoplasmic Ca2+ concentration induced by phenylephrine both in the presence and absence of extracellular Ca2+. Thus, these results suggest that calcium release from an intracellular pool is essential for the initiation of α-adrenergic stimulation of glycogenolysis in the perfused rat liver.  相似文献   

19.
20.
Beneficial actions of nitric oxide (NO) in failing myocardium have frequently been overshadowed by poorly documented negative inotropic effects mainly derived from in vitro cardiac preparations. NO's beneficial actions include control of myocardial energetics and improvement of left ventricular (LV) diastolic distensibility. In isolated cardiomyocytes, administration of NO increases their diastolic cell length consistent with a rightward shift of the passive length-tension relation. This shift is explained by cGMP-induced phosphorylation of troponin I, which prevents calcium-independent diastolic cross-bridge cycling and concomitant diastolic stiffening of the myocardium. Similar improvements in diastolic stiffness have been observed in isolated guinea pig hearts, in pacing-induced heart failure dogs, and in patients with dilated cardiomyopathy or aortic stenosis and have been shown to result in higher LV preload reserve and stroke work. NO also controls myocardial energetics through its effects on mitochondrial respiration, oxygen consumption, and substrate utilization. The effects of NO on diastolic LV performance appear to be synergistic with its effects on myocardial energetics through prevention of myocardial energy wastage induced by LV contraction against late-systolic reflected arterial pressure waves and through prevention of diastolic LV stiffening, which is essential for the maintenance of adequate subendocardial coronary perfusion. A drop in these concerted actions of NO on diastolic LV distensibility and on myocardial energetics could well be instrumental for the relentless deterioration of failing myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号