首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated standing using computational modeling techniques. MCL slackness had a primary influence on contact force distribution of the knee, while there was little effect of simulated limb correction. Anterior and middle bundle release, which involved the partial release of two-thirds of the superficial MCL, was shown to be an optimal surgical method in HTO, achieving balanced contact distribution in simulated weight-bearing standing.  相似文献   

2.
The ligaments of the knee consist of fiber bundles with variable orientations, lengths and mechanical properties. In concept, however, these structures were too often seen as homogeneous structures, which are either stretched or slack during knee motions. In previous studies, we proposed a new structural concept of the ligaments of the knee. In this concept, the ligaments were considered as multi-bundle structures, with nonuniform mechanical properties and zero force lengths. The purpose of the present study was to verify this new concept.

For this purpose, laxity characteristics of a human knee joint were compared as measured in an experiment and predicted in a model simulation study. In the experiment, the varus-valgus and anterior-posterior laxities of a knee-joint specimen containing the ligaments and the articular surfaces only, were determined. From this knee-joint, geometric and mechanical parameters were derived to supply the parameters for a three-dimensional quasi-static knee-joint model. These parameters included (i) the three-dimensional insertion points of bundles, defined in the four major knee ligaments, (ii) the mechanical properties of these ligament, as functions of their relative insertion orientations and (iii) three-dimensional representations of the articular surfaces. With this model the experiments were simulated. If knee-model predictions and experimental results agree, then the multi-bundle ligament models are validated, at least with respect to their functional role in anterior-posterior and varus-valgus loading of the joint.

The model described the laxity characteristics in AP-translation and VV-rotation of the cadaveric knee-joint specimen reasonably well. Both display the same patterns of laxity changes during knee flexion. Only if a varus moment of 8 N m was applied and if the tibia was posteriorly loaded, did the model predict a slightly higher laxity than that measured experimentally.

From the model-experiment comparisons it was concluded that the proposed structural representations of the ligaments and their mechanical property distributions seem to be valid for studying the anterior-posterior and varus-valgus laxity characteristics of the human knee-joint.  相似文献   


3.
Knee laxity, defined as the net translation or rotation of the tibia relative to the femur in a given direction in response to an applied load, is highly variable from person to person. High levels of knee laxity as assessed during routine clinical exams are associated with first-time ligament injury and graft reinjury following reconstruction. During laxity exams, ligaments carry force to resist the applied load; however, relationships between intersubject variations in knee laxity and variations in how ligaments carry force as the knee moves through its passive envelope of motion, which we refer to as ligament engagement, are not well established. Thus, the objectives of this study were, first, to define parameters describing ligament engagement and, then, to link variations in ligament engagement and variations in laxity across a group of knees. We used a robotic manipulator in a cadaveric knee model (n = 20) to quantify how important knee stabilizers, namely the anterior and posterior cruciate ligaments (ACL and PCL, respectively), as well as the medial collateral ligament (MCL) engage during respective tests of anterior, posterior, and valgus laxity. Ligament engagement was quantified using three parameters: (1) in situ slack, defined as the relative tibiofemoral motion from the neutral position of the joint to the position where the ligament began to carry force; (2) in situ stiffness, defined as the slope of the linear portion of the ligament force–tibial motion response; and (3) ligament force at the peak applied load. Knee laxity was related to parameters of ligament engagement using univariate and multivariate regression models. Variations in the in situ slack of the ACL and PCL predicted anterior and posterior laxity, while variations in both in situ slack and in situ stiffness of the MCL predicted valgus laxity. Parameters of ligament engagement may be useful to further characterize the in situ biomechanical function of ligaments and ligament grafts.  相似文献   

4.
The purpose of this study is to investigate the effect of anterior portion of anterior cruciate ligament, posterior cruciate ligament, anterior and deep portions of medial collateral ligament and the tibio-femoral articular contacts on passive knee motion. A well-accepted reference model for a normal tibio-femoral joint is reconstructed from the literature. The proposed three-dimensional dynamic tibio-femoral model includes the isometric fascicles, ligament bundles and irregularly shaped medial-lateral contact surfaces. With the approach we aim to analyze bone shape and ligament related abnormalities of knee kinematics. The rotations, translations and the contact forces during passive knee flexion were compared against a reference model and the results were found in close accordance. This study demonstrated that isometric ligament bundles play an important role in understanding the femur shape from contact points on tibia. Femoral condyles are not necessarily spherical. The surgical treatments should consider both ligament bundle lengths and contact surface geometries to achieve a problem free knee kinematics after a knee surgery.  相似文献   

5.
Recruitment of knee joint ligaments   总被引:6,自引:0,他引:6  
On the basis of earlier reported data on the in vitro kinematics of passive knee-joint motions of four knee specimens, the length changes of ligament fiber bundles were determined by using the points of insertion on the tibia and femur. The kinematic data and the insertions of the ligaments were obtained by using Roentgenstereophotogrammetry. Different fiber bundles of the anterior and posterior cruciate ligaments and the medial and lateral collateral ligaments were identified. On the basis of an assumption for the maximal strain of each ligament fiber bundle during the experiments, the minimal recruitment length and the probability of recruitment were defined and determined. The motions covered the range from extension to 95 degrees flexion and the loading conditions included internal or external moments of 3 Nm and anterior or posterior forces of 30 N. The ligament length and recruitment patterns were found to be consistent for some ligament bundles and less consistent for other ligament bundles. The most posterior bundle of each ligament was recruited in extension and the lower flexion angles, whereas the anterior bundle was recruited for the higher flexion angles. External rotation generally recruited the collateral ligaments, while internal rotation recruited the cruciate ligaments. However, the anterior bundle of the posterior cruciate ligament was recruited with external rotation at the higher flexion angles. At the lower flexion angles, the anterior cruciate and the lateral collateral ligaments were recruited with an anterior force. The recruitment of the posterior cruciate ligament with a posterior force showed that neither its most anterior nor its most posterior bundle was recruited at the lower flexion angles. Hence, the posterior restraint must have been provided by the intermediate fiber bundles, which were not considered in the experiment. At the higher flexion angles, the anterior bundles of the anterior cruciate ligament and the posterior cruciate ligament were found to be recruited with anterior and posterior forces, respectively. The minimal recruitment length and the recruitment probability of ligament fiber bundles are useful parameters for the evaluation of ligament length changes in those experiments where no other method can be used to determine the zero strain lengths, ligament strains and tensions.  相似文献   

6.
A two-dimensional, finite element study was undertaken to establish the stresses in the proximal tibia before and after total knee arthroplasty. Equivalent-thickness models in a sagittal plane were created for the natural, proximal tibia and for the proximal tibia with two different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Two load cases were considered: a joint reaction force acting in conjunction with a patellar ligament force, simulating the knee at 40 degrees of flexion; and a joint reaction force directed along the long axis of the tibia. For the natural tibia model, the pattern of principal stresses for loadcase 1 more closely corresponds to the epiphyseal plate geometry and trabecular morphology than do the principal stress patterns for loadcase 2. Judging from the distribution of principal stresses, loadcase 1 represents a more severe test of implant design than does loadcase 2. The model of the component with a peg predicted that the trabecular bone near the tip of the peg will experience higher than normal stresses, while the bone stresses near the posterior aspect adjacent to the metal tray will be reduced. A component without pegs that incorporates a posterior chamfer and an anterior lip lead to stress distributions closer to those existing in the natural tibia. The interface geometry for this design is based upon the contour of the epiphyseal plate.  相似文献   

7.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

8.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

9.
10.
The knee joint cruciate ligaments are reconstructed with the rationale to avoid joint instability, recurrent injury, damage to soft tissues and osteoarthritis. Wide range of procedures with different stiffness, pretension, orientation and insertion locations have been proposed with the primary goal to restore the joint laxity. Apart from the general lack of success in preservation of force in the reconstructed ligament itself, the concern, not yet addressed, arises as to the effect of such perturbation on the other intact cruciate ligament. The interaction between cruciate ligament forces is hypothesized in this work. Using a 3-D nonlinear finite element model of the tibiofemoral joint, we examined this hypothesis by quantifying the extent of coupling between cruciate ligaments while varying the prestrain in each ligament under flexion with and without anterior-posterior (A-P) loads. A remarkable coupling was predicted between cruciate ligament forces in flexion thus confirming the hypothesis; forces in both cruciate ligaments increased as initial strain or pretension in one of them increased whereas they both diminished as one of them became slack. Moreover, changes in laxity and in ligament forces as a cruciate ligament prestrained or pretensioned varied with flexion angle and external loads. These findings have important consequences in joint functional biomechanics following a ligament injury or replacement surgery and in selection of laxity matched or ligament force matched pretensioning protocols.  相似文献   

11.
Twenty-three knees were sectioned, digitized, and standardized to determine the 'average' three-dimensional bony geometry and ligamentous attachments. Data on normal knee motion were obtained from a cadaveric study. An algorithm was written to simulate three-dimensional patella motion. Verification of the knee model was achieved by determining femoro-tibial and patello-femoral contact locations, as well as ligament length patterns, and comparing the results with published data. The criterion for maximum predicted knee motion with a prosthesis in place was the length of the posterior cruciate ligament. Three total knee replacement surfaces were mathematically generated: flat, laxity and conforming. A greater flexion angle was obtained with a flat tibial surface than for the laxity or conforming. Posterior tibial component displacement increased the range of motion, but only slightly. For all tibial surfaces, increased range of motion was achieved with a 10 degrees posterior tilt of the tibial tray. Anterior femoral component displacement increased motion due to reduction in posterior cruciate tension during flexion. The results are applicable to the design and surgical technique of total knee replacement.  相似文献   

12.
Valgus moments on the knee joint during single-leg landing have been suggested as a risk factor for anterior cruciate ligament (ACL) injury. The purpose of this study was to test the influence of isolated valgus moment on ACL strain during single-leg landing. Physiologic levels of valgus moments from an in vivo study of single-leg landing were applied to a three-dimensional dynamic knee model, previously developed and tested for ACL strain measurement during simulated landing. The ACL strain, knee valgus angle, tibial rotation, and medial collateral ligament (MCL) strain were calculated and analyzed. The study shows that the peak ACL strain increased nonlinearly with increasing peak valgus moment. Subjects with naturally high valgus moments showed greater sensitivity for increased ACL strain with increased valgus moment, but ACL strain plateaus below reported ACL failure levels when the applied isolated valgus moment rises above the maximum values observed during normal cutting activities. In addition, the tibia was observed to rotate externally as the peak valgus moment increased due to bony and soft-tissue constraints. In conclusion, knee valgus moment increases peak ACL strain during single-leg landing. However, valgus moment alone may not be sufficient to induce an isolated ACL tear without concomitant damage to the MCL, because coupled tibial external rotation and increasing strain in the MCL prevent proportional increases in ACL strain at higher levels of valgus moment. Training that reduces the external valgus moment, however, can reduce the ACL strain and thus may help athletes reduce their overall ACL injury risk.  相似文献   

13.
Ligaments and articular contact guide passive knee flexion   总被引:4,自引:0,他引:4  
The aim of this study was to test the hypothesis that the coupled features of passive knee flexion are guided by articular contact and by the isometric fascicles of the ACL, PCL and MCL. A three-dimensional mathematical model of the knee was developed, in which the articular surfaces in the lateral and medial compartments and the isometric fascicles in the ACL, PCL and MCL were represented as five constraints in a one degree-of-freedom parallel spatial mechanism. Mechanism analysis techniques were used to predict the path of motion of the tibia relative to the femur. Using a set of anatomical parameters obtained from a cadaver specimen, the model predicts coupled internal rotation and ab/adduction with flexion. These predictions correspond well to measurements of the cadaver specimen’s motion. The model also predicts posterior translation of contact on the tibia with flexion. Although this is a well-known feature of passive knee flexion, the model predicts more translation than has been reported from experiments in the literature. Modelling of uncertainty in the anatomical parameters demonstrated that the discrepancy between theoretical predictions and experimental measurement can be attributed to parameter sensitivity of the model. This study shows that the ligaments and articular surfaces work together to guide passive knee motion. A principal implication of the work is that both articular surface geometry and ligament geometry must be preserved or replicated by surgical reconstruction and replacement procedures to ensure normal knee kinematics and by extension, mechanics.  相似文献   

14.
The knee joint is partially stabilized by the interaction of multiple ligament structures. This study tested the interdependent functions of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) by evaluating the effects of ACL deficiency on local MCL strain while simultaneously measuring joint kinematics under specific loading scenarios. A structural testing machine applied anterior translation and valgus rotation (limits 100 N and 10 N m, respectively) to the tibia of ten human cadaveric knees with the ACL intact or severed. A three-dimensional motion analysis system measured joint kinematics and MCL tissue strain in 18 regions of the superficial MCL. ACL deficiency significantly increased MCL strains by 1.8% (p<0.05) during anterior translation, bringing ligament fibers to strain levels characteristic of microtrauma. In contrast, ACL transection had no effect on MCL strains during valgus rotation (increase of only 0.1%). Therefore, isolated valgus rotation in the ACL-deficient knee was nondetrimental to the MCL. The ACL was also found to promote internal tibial rotation during anterior translation, which in turn decreased strains near the femoral insertion of the MCL. These data advance the basic structure-function understanding of the MCL, and may benefit the treatment of ACL injuries by improving the knowledge of ACL function and clarifying motions that are potentially harmful to secondary stabilizers.  相似文献   

15.
Although the anterior drawer test at the ankle joint is commonly used in routine clinical practice, very little is known about the sharing of load between the individual passive structures and the joint response at different flexion angles.A mathematical model of the ankle joint was devised to calculate ligament fibre recruitment and load/displacement curves at different flexion angles. Ligaments were modelled as three-dimensional arrays of fibres, and their orientations at different flexion angles were taken from a previously validated four-bar-linkage model in the sagittal plane. A non-linear stress/strain relationship was assumed for ligament fibres and relevant mechanical parameters were taken from two reports in the literature. Talus and calcaneus were assumed to move as a single rigid body. Antero/distal motion of the talus relative to the tibia was analysed.The ankle joint was found to be stiffer at the two extremes of the flexion range, and the highest laxity was found around the neutral position, confirming previous experimental works. With a first dataset, a 20N anterior force produced 4.3, 5.5, and 4.4mm displacement respectively at 20 degrees plantarflexion, at neutral, and at 20 degrees dorsiflexion. At 10 degrees plantarflexion, for a 6mm displacement, 65% of the external force was supported by the anterior talofibular, 11% by the deep anterior tibiotalar and 5.5% by the tibionavicular ligament. Corresponding results from a second dataset were 1.4, 2.4 and 1.8mm at 40N force, and 80%, 0% and 2% for a 3mm displacement. A component of the contact force supported the remainder.  相似文献   

16.
Knee instability following anterior cruciate ligament (ACL) rupture compromises function and increases risk of injury to the cartilage and menisci. To understand the biomechanical function of the ACL, previous studies have primarily reported the net change in tibial position in response to multiplanar torques, which generate knee instability. In contrast, we retrospectively analyzed a cohort of 13 consecutively tested cadaveric knees and found distinct motion patterns, defined as the motion of the tibia as it translates and rotates from its unloaded, initial position to its loaded, final position. Specifically, ACL-sectioned knees either subluxated anteriorly under valgus torque (VL-subluxating) (5 knees) or under a combination of valgus and internal rotational torques (VL/IR-subluxating) (8 knees), which were applied at 15 and 30° flexion using a robotic manipulator. The purpose of this study was to identify differences between these knees that could be driving the two distinct motion patterns. Therefore, we asked whether parameters of bony geometry and tibiofemoral laxity (known risk factors of non-contact ACL injury) as well as in situ ACL force, when it was intact, differentiate knees in these two groups. VL-subluxating knees exhibited greater sagittal slope of the lateral tibia by 3.6 ± 2.4° (p = 0.003); less change in anterior laxity after ACL-sectioning during a simulated Lachman test by 3.2 ± 3.2 mm (p = 0.006); and, at the peak applied valgus torque (no internal rotation torque), higher posteriorly directed, in situ ACL force by 13.4 ± 11.3 N and 12.0 ± 11.6 N at 15° and 30° of flexion, respectively (both p ≤ 0.03). These results may suggest that subgroups of knees depend more on their ACL to control lateral tibial subluxation in response to uniplanar valgus and multiplanar valgus and internal rotation torques as mediated by anterior laxity and bony morphology.  相似文献   

17.
This study examines the age at which a femoral physeal failure ceased to occur in a mouse model of medial collateral ligament (MCL) testing. Biomechanical testing of the MCL with load to failure can result in physeal failure rather than MCL failure in skeletally immature animals. Failure mode depended significantly on age (p<0.05). Sixty percent of the knees tested at 4 months failed at the physis rather than at the ligament, whereas, only ten percent of the knees tested at 5 and 6 months failed at the physis. The mean ultimate force to failure for the specimens in which the failure occurred at the ligament was 8.1 N with a higher values for the right side versus the left (p<0.05). For the specimens in which the failure occurred at the physis, the mean ultimate force to failure was 11.2 N. We now consider that 5 month old mice are functionally skeletally mature and old enough to be tested biomechanically with few failures at the physis.  相似文献   

18.
Three orthogonal components of the tibiofemoral and patellofemoral forces were measured simultaneously for knees with intact cruciate ligaments (nine knees), following anterior cruciate ligament resection (six knees), and subsequent posterior cruciate ligament resection (six knees). The knees were loaded using an experimental protocol that modeled static double-leg squat. The mean compressive tibial force increased with flexion angle. The mean anteroposterior tibial shear force acted posteriorly on the tibia below 50 deg flexion and anteriorly above 55 deg. Mediolateral shear forces were low compared to the other force components and tended to be directed medially on both the patella and tibia. The mean value of the ratio of the resultant tibial force divided by the quadriceps force decreased with increasing flexion angle and was between 0.6 and 0.7 above 70 deg flexion. The mean value of the ratio of the resultant tibiofemoral contact force divided by the resultant patellofemoral contact force decreased with increasing flexion and was between 0.8 and 1.0 above 55 deg flexion. Cruciate ligament resection resulted in no significant changes in the patellar contact forces. Following resection of the anterior cruciate ligament, the tibial anteroposterior shear force was directed anteriorly over all flexion angles tested. Subsequent resection of the posterior cruciate ligament resulted in an approximately 10 percent increase in the quadriceps tendon and tibial compressive force.  相似文献   

19.
The aim of this cadaveric study was to describe the kinematics of the anterior cruciate ligament (ACL)-intact, posterolateral (PL) bundle-deficient and ACL-deficient knee by applying a protocol for computer-assisted evaluation of knee kinematics. The hypothesis that the PL bundle functions mainly at low knee flexion angles was tested. An optical tracking system was used to acquire knee joint motion on 10 knees during clinical evaluations by tracking markers rigidly attached to the bones. The protocol included acquisition of anterior-posterior (AP) translations and internal-external (IE) rotations, and evaluation of three clinical knee laxity tests (anterior drawer, manual and instrumented Lachman). The data demonstrated no significant contribution to AP translation and IE laxity from the PL bundle over the entire range of motion. The clinical knee laxity tests showed no significant differences between the ACL-intact and PL bundle-deficient states. The hypothesis could not be proven. Current clinical knee laxity measurements may not be suited for detecting subtle changes such as PL bundle deficiency in the ACL anatomy. The computation of knee laxity might be a step towards a more precise kinematic test of knee stability not only in the native and torn ACL state of the knee but also in the reconstructed knee.  相似文献   

20.
There are many causes of lengthening of an anterior cruciate ligament soft-tissue graft construct (i.e., graft+fixation devices+bone), which can lead to an increase in anterior laxity. These causes can be due to plastic deformation andor an increase in elastic deformation. The purposes of this in vitro study were (1) to develop the methods to quantify eight causes (four elastic and four plastic) associated with the tibial and femoral fixations using Roentgen stereophotogrammetric analysis (RSA) and to demonstrate the usefulness of these methods, (2) to assess how well an empirical relationship between an increase in length of the graft construct and an increase in anterior laxity predicts two causes (one elastic and one plastic) associated with the graft midsubstance, and (3) to determine the increase in anterior tare laxity (i.e., laxity under the application of a 30 N anterior tare force) before the graft force reaches zero. Markers were injected into the tibia, femur, and graft in six cadaveric legs whose knees were reconstructed with single-loop tibialis grafts. To satisfy the first objective, legs were subjected to 1500 cycles at 14 Hz of 150 N anterior force transmitted at the knee. Based on marker 3D coordinates, equations were developed for determining eight causes associated with the fixations. After 1500 load cycles, plastic deformation between the graft and WasherLoc tibial fixation was the greatest cause with an average of 0.8+/-0.5 mm followed by plastic deformation between the graft and cross-pin-type femoral fixation with an average of 0.5+/-0.1 mm. The elastic deformations between the graft and tibial fixation and between the graft and femoral fixation decreased averages of 0.3+/-0.3 mm and 0.2+/-0.1 mm, respectively. The remaining four causes associated with the fixations were close to 0. To satisfy the remaining two objectives, after cyclic loading, the graft was lengthened incrementally while the 30 N anterior tare laxity, 150 N anterior laxity, and graft tension were measured. The one plastic cause and one elastic cause associated with the graft midsubstance were predicted by the empirical relationships with random errors (i.e., precision) of 0.9 mm and 0.5 mm, respectively. The minimum increase in 30 N anterior tare laxity before the graft force reached zero was 5 mm. Hence, each of the eight causes of an increase in the 150 N anterior laxity associated with the fixations can be determined with RSA as long as the overall increase in the 30 N anterior tare laxity does not exceed 5 mm. However, predicting the two causes associated with the graft using empirical relationships is prone to large errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号