首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten bulls with a scrotal circumference of less than 30 cm at the end of growth performance testing, and 10 cohorts of the same age, size and breed type with a scrotal circumference greater than 30 cm were used to evaluate if testosterone response following GnRH administration could be used to test for fertility, for semen quality, and for specific pathologic testicular parenchymal changes. Serum testosterone concentrations were determined immediately before and 2 to 3 hours following intramuscular injection of 250 ug GnRH. Bulls were examined for breeding soundness, then fertility was tested in a breeding trial; testicular histology was assessed by determining the percentage of cross-sections of seminiferous tubules with no spermatocytes. The mean (+/- SEM) post-GnRH serum testosterone concentration for all bulls was 11.71 (+/-0.64) ng/ml. In order to examine for an association, the GnRH response was classified as above or below the mean for resultant serum testosterone concentration. The GnRH response classification was not related to the scrotal circumference, percentage of tubules devoid of spermatocytes, or percentage of progressively motile spermatozoa (P > 0.10). The percentage of morphologically normal spermatozoa was significantly higher (P < 0.05) in the bulls with a higher than mean testosterone secretion in response to GnRH injection. In the breeding trial, the percentage of heifers bred and the percentage of heifers pregnant (60 days post breeding) were not significantly different (P > 0.10) between the 2 classifications of GnRH response. The GnRH response test was related to the percentage of morphologically normal spermatozoa but did not predict fertility of yearling bulls in this study.  相似文献   

2.
Studies were conducted to determine the 24-hour fluctuations in blood serum testosterone concentration in adult buffalo bulls, and to measure testosterone secretion before and after GnRH administration in male buffaloes of different age groups. Testosterone levels in three sexually mature bulls ranged from 0.2 to 2.7 ng/ml with a mean of 0.6 +/- 0.2 ng/ml. Samples collected in November had significantly higher (P<0.05) testosterone than those drawn in February (dry season) as did samples collected during the day as opposed to the night. Sera testosterone concentrations were lower in younger bulls with a range of 0.2 to 0.6 ng/ml. GnRH induced an increase in testosterone in 6, 12, 24 and 36-month old bulls with the greatest response being observed at 36 months. GnRH did not elicit a response in one-month old bulls. It may be concluded that baseline sera testosterone concentrations in buffalo bulls, as well as responsiveness to GnRH injection, increase with sexual maturity and are subject toseasonal and diurnal variations.  相似文献   

3.
Five Zebu x British crossbred bulls 17 months of age and of uniform liveweight (320+/-3 kg) were used to study testosterone responses to single intramuscular doses of exogenous gonadotropin-releasing hormone (GnRH). The eight dose levels used were 0, 31.25, 62.5, 125, 250, 500, 1000, and 2000 ng GnRH/kg live weight. Plasma samples for hormone responses were collected at 30-minute intervals from zero to three hours and at one-hour intervals from three to seven hours postinjection. Luteinizing hormone (LH) and testosterone responses were measured as peak heights or as areas under response curves. Increasing the dosage of GnRH increased the time to reach the peak LH response, the height and duration of the response, and the area under the response curve. The maximum LH peak height was reached by the 1 mug/kg dose. In contrast to LH, testosterone responses reached the same peak heights (two hours postinjection of GnRH) for all doses of GnRH. The only effect of increased dosage was to increase the duration of response. Testosterone responses showed repeatable differences (P<0.01) between animals, but LH responses did not. It was demonstrated that the testosterone status of bulls can be accurately assessed by simply measuring testosterone in a single plasma sample collected two to three hours after the intramuscular injection of 100 mug or more (dose unimportant) of GnRH per bull.  相似文献   

4.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Forty-one postpartum anestrous Hereford cows, maintained under range conditions, were used to determine the influence of gonadotropin releasing hormone (GnRH) or pregnant mare serum gonadotropin (PMSG) on ovarian function. Anestrous cows were identified by estrous detection with sterile bulls and concentrations of progesterone in plasma obtained weekly. At 45 +/- 2 days postpartum, cows were allotted to the following treatments: (1) control (saline), (2) 100 mug GnRH, (3) 200 mug GnRH, (4) 200 mug GnRH in carboxymethyl cellulose (CMC), (5) 500 IU PMSG, (6) 1,000 IU PMSG or (7) 2,000 IU PMSG. Cows were bled frequently the first day after treatment and then every other day until 85 days postpartum. The LH responses after 100 and 200 mug of GnRH were not significantly different and mixing 200 mug GnRH with CMC before injection did not significantly alter the LH response. During the first 20 days after treatment, neither GnRH nor 500 IU PMSG altered estradiol concentrations in plasma, but treatment of cows with 1,000 or 2,000 IU PMSG resulted in increased (P<0.01) concentrations of estradiol. The time postpartum required for concentrations of progesterone in plasma to exceed 1 ng/ml was reduced (P<0.05) by all treatments except 100 mug GnRH. These data indicate that GnRH causes LH release in anestrous range cows and that treatment with 1,000 or 2,000 IU PMSG initiates ovarian activity as evidenced by increased concentrations of estradiol in plasma.  相似文献   

6.
The objective of this study was to evaluate the effects of GnRH administered at Day 12 post-AI on the reproductive performance of dairy cows. Holstein-Friesian dairy cows (n=103) on a large Hungarian dairy farm were allocated randomly to treated (n=54) or control (n=49) groups. Twelve days after AI, treated cows received a GnRH agonist i.m., while the control group received a placebo (physiological saline). Progesterone radioimmunoassay was used to determine the correct timing of artificial insemination (Day 0) and the incidence of luteal insufficiency on Day 12. Ultrasonography and radioimmunoassay for pregnancy-associated glycoprotein were used to detect pregnancy and late embryonic/fetal mortality between Days 32 and 55 after AI. Three cows from each group were inseminated when progesterone concentrations were >1.0 ng/mL, and six cows (four from the treated and two from the control group) had luteal insufficiency (progesterone<1.0 ng/mL) on Day 12. Late embryonic/fetal mortality occurred in three treated cows and in two control cows. When these cows were removed from the model, calving rates after first service were 59.6% (28/47) and 59.1% (26/44) for treated and control cows, respectively (P>0.05). There was no significant difference between treated and control cows when they were inseminated before or after Day 100 from calving. In summary, administration of a GnRH agonist on Day 12 after AI did not improve reproductive performance in dairy cows. However, our approach may be used for the field evaluation of different treatment protocols.  相似文献   

7.
Thirty crossbred bulls, 12 to 13 mo of age, were used to examine the relationship of testosterone and progesterone concentrations and testosterone: progesterone ratio to measurements of testicular function. Bulls were allotted to 1 of 2 groups based on scrotal circumferences (SC) as follows: the Small SC (n=20) group had scrotal circumference less than 28 cm while the Large SC (n=10) group had scrotal circumference greater than 28 cm. All bulls were administered GnRH (100 mug, im), and blood was obtained immediately prior to injection (t=0), 30 min after injection (t=30) and 2 to 3 h after injection (t=150). Serum was assayed for concentrations of testosterone and progesterone. Semen was evaluated for the percentage of morphologically normal spermatozoa. Testicular parenchyma was sectioned and stained, and 300 cross sections per testis of seminiferous tubules were examined under a light microscope and classified as either active (spermatocytes and spermatids present) or inactive (no spermatocytes or spermatids present). Although progesterone concentrations varied widely (range: 21 pg/ml to 1070 pg/ml), repeated measurements from individual bulls were highly correlated (r(2)=0.74) and did not change significantly (P > 0.1) in response to GnRH treatment. Small SC bulls had a higher percentage of inactive seminiferous tubules (P < 0.001) and a lower percentage morphologically normal spermatozoa (P < 0.001) than Large SC bulls, but no differences in testosterone or progesterone concentrations or in the ratio of testosterone: progesterone were detected. Mean serum testosterone concentration increased (P < 0.0001) by 30 min after GnRH treatment and continued to increase (P < 0.0001) through t=150 but did not differ (p > 0.1) between groups. Normal testosterone secretion in response to GnRH injection suggested that no biochemical lesions in the testosterone production pathway were present in bulls with very small scrotal circumference.  相似文献   

8.
In bull calves an early transient increase in circulating concentrations of LH occurs between 6 and 20 weeks of age. This has been shown to influence reproductive development and performance later in life. In an attempt to hasten the onset of sexual maturity, bull calves (Hereford x Charolais) were treated (im) with 120 ng/kg of GnRH (n=6) twice every day from 4 to 8 weeks of age; control calves received saline (n=6). Injection of GnRH resulted in an LH pulse in all animals. GnRH treated bulls displayed more rapid testicular growth rates between 22 and 44 weeks of age. Sexual maturity (SC>or=28 cm) was achieved earlier in GnRH treated bulls compared to saline treated bulls (41.7+/-2.22 and 47.0+/-0.45 weeks of age, respectively) and this was confirmed by age of sexual maturity based on ejaculate characteristics (>50 million spermatozoa, >10% motility; 45.0+/-0.86 and 49.0+/-1.13 weeks of age for GnRH and control treated bull calves, respectively; P<0.05). We concluded that treatment with GnRH, twice daily, from 4 to 8 weeks of age, prior to the endogenous early increase in plasma LH concentrations, could increase in plasma LH concentrations, advance testicular development and reduce age at puberty in beef bull calves. This may provide the basis for a simple regimen to hasten sexual development in the bull calf.  相似文献   

9.
A study was undertaken to evaluate the effect of alternating bulls between a single and a multiple sire mating (MSM) program on the reproductive performance of suckled Zebu cows raised under range conditions in the humid tropics of Costa Rica. Multiparous Zebu cows (n=94) suckling calves were distributed between two experimental trials (A and B) consisting of 47 animals each. A single sire mating (SSM) system was alternated weekly with a MSM system with three bulls. This period lasted for 8 weeks. To facilitate estrous expression, four cows were strategically synchronized (estrus-stimulated) in alternate weeks. Courtship predominated over mounting under non-stimulated estrus, for each mounting performed an average of 6.0 and 6.3 courtship activities were recorded in the SSM and MSM, respectively. Under the influence of strategic synchronization corresponding values were 3.9 and 4.2 in the SSM and MSM, respectively (P>0.05). Blood samples for progesterone evaluation were taken twice weekly. All cows in trial A were in anestrus at the start of the study. By second week, 5 out of the 47 cows had initiated estrous cycles and by the third week six were pregnant. In contrast in trial B, 9 out of 47 had initiated estrous cycles before interacting with the bulls and on week 3, only two females had become pregnant and three had initiated estrous cycles. Significant differences were found in the cumulative percentage of cows pregnant between trials A and B (P<0.05). Even though these results occurred, the rotation of the bulls (one or three), or the type of cows (estrus-stimulated or not) did not influence the results in this study.  相似文献   

10.
Twenty-seven Boran and 37 Boran x Friesian crossbred bulls were weaned at 6 months of age and randomly assigned to either a dry season supplementary feed containing 16% crude protein or control groups. Data were collected on body weight, wither height and scrotal circumference (SC) at monthly intervals. Bulls were also challenged with 100 mug of gonadotropin releasing hormone (GnRH) at 2-month intervals and plasma testosterone responses were determined. Semen was collected at monthly intervals by electroejaculation. Post weaning average daily weight gain was significantly (P<0.001) higher in supplemented than in control groups (302 vs 208 g/day). Scrotal circumference growth rates were also significantly (P<0.001) higher in supplemented than in control bulls (0.38 vs 0.31 mm/day). Bulls fed supplemented diets were younger (430 vs 473 days; P<0.001) and heavier (217 vs 203 kg; P<0.05) and had better semen quality at puberty than the control bulls. There was a trend for larger SC at puberty in supplemented than in control bulls (P=0.06). There were no significant differences in wither height or in testosterone response to GnRH at puberty between supplemented and control bulls. Body and SC growth rates to puberty for Boran and Boran x Friesian bulls were 189 and 321 g/day (P<0.001) and 0.27 and 0.42 mm/day (P<0.01), respectively. Boran bulls were older (513 vs 406 days; P<0.01) and lighter (201 vs 215 kg; P<0.05), and had smaller SC (23.9 vs 26 cm; P<0.01) at puberty than Boran x Friesian bulls. Testosterone responses to GnRH increased (P<0.001) with age and were significantly higher (P<0.05) in supplemented and in Boran x Friesian bulls than in control and Boran bulls. Wither height, testosterone response to GnRH and semen quality at puberty did not differ between breeds. Dry season supplementation improved growth rate and enhanced sexual development and maturity in both Boran and Boran x Friesian bulls, and would be a useful management strategy for enhancing fertility in bulls in the tropics.  相似文献   

11.
Groups of bull calves received a primary immunization against testosterone (Group T; N = 7) or oestradiol-17 beta (Group E; N = 9) at 3 months of age and booster injections on four occasions at approximately 2 month intervals. Controls (Group C, N = 7) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group T (730 +/- 231; reciprocal of titre) and Group E (12,205 +/- 4366) bulls; however, peak antibody titres generally declined with successive booster injections. Mean plasma concentrations of LH, FSH and testosterone during the period from 3 to 10 months of age were higher (P less than 0.05) in Group T bulls than in Groups C and E. Group T bulls had larger testes compared with controls from 6 months of age onwards. At castration at 14 months of age, testes of Group T bulls were heavier (P less than 0.05) than those of Groups C and E (179 +/- 13, 145 +/- 8 and 147 +/- 6 g, respectively). At 10 months of age, there were no differences among treatment groups in LH responses to LHRH, but the testosterone responses were greater (P less than 0.05) in bulls in Group T (26.2 +/- 4.9 ng/ml) and Group E (16.6 +/- 1.8 ng/ml) compared with those in Group C (6.9 +/- 0.6 ng/ml). Testosterone responses to hCG determined at 13 months of age were also greater (P less than 0.05) in Groups T and E relative to controls. At 14 months of age daily sperm production rates per bull (X 10(-9)) were higher (P less than 0.10) in Group T bulls (2.2 +/- 0.1) than those in Groups C (1.6 +/- 0.2) and E (1.6 +/- 0.1). These results indicate that early immunity against testosterone is associated with increased gonadotrophin secretion and accelerated growth of the testes in prepubertal bulls. Also, chronic immunity against testosterone or oestradiol-17 beta enhances the steroidogenic response of bull testes to gonadotrophic stimulation. If the above responses observed in young bulls are shown to be sustained, then immunity against gonadal steroids early in life may confer some reproductive advantage in mature animals.  相似文献   

12.
The objective was to compare the relative response between rams and bulls in characteristics of LH, FSH and testosterone (T) secretion, during and after long-term treatment with GnRH analogs. Animals were treated with GnRH agonist, GnRH antagonist, or vehicle (Control) for 28 days. Serial blood samples were collected on day 21 of treatment, and at several intervals after treatment. Injections of natural sequence GnRH were used to evaluate the capacity of the pituitary to release gonadotropins during and after treatment. Treatment with GnRH agonist increased basal LH and T concentrations in both rams and bulls, with a greater relative increase in bulls. Endogenous LH pulses and LH release after administration of GnRH were suppressed during treatment with GnRH agonist. Treatment with GnRH antagonist decreased mean hormone concentrations, LH and T pulse frequency, and the release of LH and T after exogenous GnRH, with greater relative effects in bulls. Rams previously treated with antagonist had a greater release of LH after administration of GnRH compared with control rams, while rams previously treated with agonist showed a reduced LH response. Bulls previously treated with agonist had reduced FSH concentrations and LH pulse amplitudes compared with control bulls while bulls previously treated with antagonist had greater T concentrations and pulse frequency. The present study was the first direct comparison between domestic species of the response in males to treatment with GnRH analogs. The findings demonstrated that differences do occur between rams and bulls in LH, FSH and testosterone secretion during and after treatment. Also, the consequences of treatment with either GnRH analog can persist for a considerable time after discontinuation of treatment.  相似文献   

13.
Variation in ability to produce testosterone in response to both GnRH and ACTH administration and quatitative relationships between GnRH-stimulated testosterone levels, ACTH-stimulated testosterone levels, sexual interest and breeding performance were assessed in a group of 31 Duroc boars (115.4 +/- 2.5 kg body weight and 212.2 +/- 3.0 days of age). Mean area beneath the testosterone response curve increased (P<0.01) after GnRH and ACTH but the magnitude of response was variable among boars. Post-GnRH testosterone area varied from 7.44 to 50.86 ng/ml X h with a CV = 52.41% while post-ACTH testosterone area varied from 4.99 to 28.78 ng/ml X h with a CV = 45.46%. Mean sexual interest and mean breeding performance scores were correlated (r = 0.67, P<0.01); however, correlations of either variable with testosterone areas were low and nonsignificant. These results indicate that the testosterone-producing ability of boars of similar age and breeding is highly variable and suggest that peripheral testosterone concentrations may not be good indicators of either libido or breeding performance.  相似文献   

14.
Plasma hormone levels were examined in 4 mature Zebu bulls of normal libido (HL) and 4 which were sexually inactive (LL). When used in an artificial insemination programme the 8 bulls had similar fertility. Basal levels of LH and testosterone (T) estimated from 8 sequential blood samples at 30 minute intervals were not different in HL and LL bulls. Exposure of the animals to an estrous cow did not stimulate LH release. Following sexual stimulation plasma T levels actually decreased by an average (±S.E) of 2.9 (±1.9) ng/ml in the HL group and increased by 3.9 (±1.6) ng/ml in the LL group. An injection of 1 mg GnRH (Hoechst) caused LH release of similar magnitude in HL and LL bulls. The elevation of plasma T which followed GnRH injection was significantly larger in HL bulls.Low libido was not associated with a deficiency of basal LH or T, nor with the ability of the pituitary to respond to GnRH.  相似文献   

15.
We investigated the nature and sites of changes in the hypothalamic-pituitary axis associated with the onset of high-frequency, high-amplitude discharges of luteinizing hormone (LH) in young bulls during the transition from the infantile to the prepubertal phase of development. Blood serum and neuroendocrine tissues from bulls killed at 1, 6, 10, 14, or 18 wk of age were evaluated. Concentrations of LH in serum from bulls 1 or 6 wk old averaged less than 0.25 ng/ml and only one episodic discharge of LH was detected for 10 bulls. At 10, 14, or 18 wk, 14 of 15 bulls had episodic discharges of LH. Concentrations of testosterone in serum were progressively higher at 10, 14, and 18 wk, but the concentration of estradiol was maximal at 6 wk. The concentrations of gonadotropin-releasing hormone (GnRH) in the anterior hypothalamus, posterior hypothalamus, or median eminence were not influenced by age. However, concentration of GnRH receptors in the anterior pituitary gland increased 314% between 6 and 10 wk and the concentration of LH increased 67%. Between 6 and 10 wk, concentrations of estradiol receptors in the anterior and posterior hypothalamus declined by 68% and 46%, but the concentration of estradiol receptors in the anterior pituitary gland increased by 103%. For most characteristics, there was no major change between 10 and 18 wk. We postulate that between 6 and 10 wk of age, there is 1) removal of an estradiol-mediated block of GnRH secretion and 2) an estradiol-mediated, and possibly GnRH-mediated, increase in pituitary GnRH receptors. Together, these changes result in greatly increased stimulation of the anterior pituitary gland by GnRH between 6 and 10 wk of age and stimulation of the discharges of LH characteristic of bulls in the early prepubertal phase of development.  相似文献   

16.
Hourly serum samples from four adult Murrah buffalo bulls of 5 to 6 years of age were analysed for testosterone, thyroxine and triiodothyronine by radioimmunoassay during a period of 24 hours. All four bulls exhibited three episodic peaks for testosterone with some variation in the time, duration and peak concentration of the hormone. The average testosterone concentration varied from 0.30 to 3.50 ng/ml of serum. Thyroxine levels varied from 20 to 40 ng/ml of serum among the four bulls. One clear-cut peak was observed between 2 and 5 a.m. in three of the four bulls. One animal showed a characteristic peak at 10 p.m. Triiodothyronine levels ranged from 1 to 2 ng/ml of serum and followed a similar trend as that of thyroxine except for an additional small peak between 6 and 9 p.m.  相似文献   

17.
In Italian buffalo cows the spontaneous cyclic ovarian activity is mainly high in autumn, while during spring and early summer it is very low. However many farmers separate males from females in the October-February period to obtain births in winter-spring. In order to verify if blood testosterone concentration in adult buffalo bulls is affected by season and by different management of the contact with females, 20 adult buffalo males, bred in central Italy were submitted to monthly blood sampling for 1 year, from September to August. The bulls were kept together with females all the time (group A; n=9) or were held separated from cows from October to February (group B; n=11). The mean (+/-S.E.M.) serum testosterone concentrations were higher in spring and summer than in autumn and winter in group B (2.07+/-0.1 ng/mL versus 0.99+/-0.08 ng/mL, P<0.01) but in group A the seasonal difference was not significant (2.09+/-0.13 versus 1.48+/-0.28). The management of the contact with females affected testosterone values (P<0.01): in the separation period (October-February) the mean serum concentration in group B was lower than in March-September, when the cows were together with the bulls (0.94+/-0.09 ng/mL versus 1.95+/-0.1 ng/mL, P<0.05). This is not true for group A (1.49+/-0.20 ng/mL versus 2.00+/-0.13 ng/mL, NS). It is concluded that contact with females exerted a major stimulus for the testicular androgen secretion in buffalo bulls, even if other seasonal factors (climate, food intake) may affect control of gonadal activity.  相似文献   

18.
The influence of sex hormones is a key proximate factor underlying male reproductive behavior in mammals. Effective conservation policies for the remaining purebred plains bison (Bison bison bison) herds require knowledge of the physiology underlying bison reproductive biology. We used fecal steroid analysis to characterize androgen levels in adult bison bulls before, during, and after the rut, and to examine androgen levels of bulls differing in reproductive status, age, and mating success. Fieldwork was carried out at the Fort Niobrara National Wildlife Refuge in north-central Nebraska. All adult bison in the herd were individually known by unique brands. Fecal samples were collected during 2003 from bulls during pre-rut (June), rut (July-August), and post-rut (September), and behavioral observations focused on reproductive status and mating success during the rut. Matched sample data indicated that androgen levels (ng/g feces) of bulls peaked during the rut, doubling from pre-rut to rut and then declining by 75% during post-rut. Dominant bulls that tended (guarded) cows maintained higher androgen levels than bulls that were not tending. There was a positive correlation between bull age (associated with mating success) and androgens, with higher androgen levels in prime-aged bulls compared with younger bulls. Nonetheless, there was no correlation between mating success (measured by number of copulations observed) and androgen level. This suggests that while androgens may provide the proximate motivation to compete for matings, other factors determine the mating success of bison bulls.  相似文献   

19.
Hemicastration of Holstein bulls at 3 months of age resulted in increased (P<0.005) testicular weitht and testis sperm cell content at 330 days after treatment, but did not alter sperm cell concentration in the remaining hypertrophied testis. Radioimmuroassay of blood hormones at 1, 6, 12, and 24 weeks after treatment revealed that unilateral castration did not alter (P>0.1) basal levels or GnRH response profiles of either LH or testosterone compared to intact bulls. Hemicastration caused FSH to be elevated (P<0.01) compared to intact bulls at all sampling periods in both unstimulated and GnRH stimulated bulls. Prolactin varied with season and was greater (P<0.001) in hemicastrated bulls than in intact bulls at 1 and 6 weeks after treatment. Results indicate that unilateral castration at 3 months of age caused testicular hypertrophy of both steroidogenic and gametogenic function and this phenomena may be triggered by increased FSH or prolactin secretion, or both. Further, results indicate different testicular regulation mechanisms exist for pituitary LH and FSH release in bulls.  相似文献   

20.
Pedigree analyses in the Breeding Program for Nellore Cattle   总被引:1,自引:0,他引:1  
Parameters based on the probability of gene origin were used to describe genetic variability in three reproductive groups from the Breeding Program for Nellore Cattle (PMGRN). The three reproductive populations (cows in reproductive age, bulls from artificial insemination centers and young bulls in progeny test) generated medium to low values. The effective number of founders (Nf ), the effective number of ancestors (Na) and the remaining genomes (Ng) suggest low founder representativeness, high genetic contribution by some ancestors, considerable loss of founder alleles and lack of allelic representativeness in bulls kept in artificial insemination centers and young sires in progeny test in relation to the diversity on the farms participating in the PMGRN. The parameters based on the probability of gene origin in the three reproductive groups were: 84.3, 53 and 54.2 (Nf ); 71, 36.6 and 30 (Na) and 51.4, 19.3 and 19 (Ng) for cows, bulls from artificial insemination centers and young sires in progeny test, respectively. Future matings and the introduction of selected progeny reproduction may decrease the parameters based on the probability of gene origin in each reproductive group, thereby increasing considerably the additive relationship in the three reproductive groups and consequently increasing the probability of inbreeding in the future. Strategies to maintain genetic variability in bull populations must be implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号