首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Organogenesis at the shoot meristem requires a delicate balance between stem cell specification and differentiation. In Arabidopsis thaliana, WUSCHEL (WUS) is a key factor promoting stem cell identity, whereas the CLAVATA (CLV1, CLV2, and CLV3) loci appear to promote differentiation by repressing WUS expression. In a screen for mutations modifying clv1 mutants, we have identified a novel regulator of meristem development we term CORONA (CNA). Whereas cna single mutant plants exhibit subtle defects in meristem development, clv cna double mutants develop massively enlarged apices that display early loss of organogenesis, misexpression of WUS and CLV3, and eventual differentiation of the entire apex. The CNA gene was isolated by positional cloning and found to encode a class III homeodomain Leu zipper protein. A missense mutation resulting in the dominant-negative cna-1 allele was identified in a conserved domain of unknown function, and a likely null allele was shown to display a similar but weaker phenotype. CNA is expressed in developing vascular tissue, diffusely through shoot and flower meristems, and within developing stamens and carpels. Our analysis of WUS expression in wild-type, clv, and clv cna plants revealed that, contrary to current models, WUS is neither necessary nor sufficient for stem cell specification and that neither WUS nor CLV3 is a marker for stem cell identity. We propose that CNA functions in parallel to the CLV loci to promote organ formation.  相似文献   

4.
5.
6.
PAS genes are required for peroxisome biogenesis in the yeast S. cerevisiae. Here we describe the cloning, sequencing, and characterization of the PAS1 gene. Its gene product, Pas1p, has been identified as a rather hydrophilic 117 kd polypeptide. The predicted Pas1p sequence contains two putative ATP-binding sites and reveals a structural relationship to three other groups of proteins associated with different biological processes such as vesicle-mediated protein transport (NSF and Sec18p), control of cell cycle (Cdc48p, VCP, and p97-ATPase), and modulation of gene expression of the human immunodeficiency virus (TBP-1). The proteins share a highly conserved domain of about 185 amino acids including a consensus sequence for ATP binding. We suggest that these proteins are members of a novel family of putative ATPases and may be descendants of one common ancestor.  相似文献   

7.
8.
9.
We isolated three alleles of an Arabidopsis thaliana gene named ROXY1, which initiates a reduced number of petal primordia and exhibits abnormalities during further petal development. The defects are restricted to the second whorl of the flower and independent of organ identity. ROXY1 belongs to a subgroup of glutaredoxins that are specific for higher plants and we present data on the first characterization of a mutant from this large Arabidopsis gene family for which information is scarce. ROXY1 is predominantly expressed in tissues that give rise to new flower primordia, including petal precursor cells and petal primordia. Occasionally, filamentous organs with stigmatic structures are formed in the second whorl of the roxy1 mutant, indicative for an ectopic function of the class C gene AGAMOUS (AG). The function of ROXY1 in the negative regulation of AG is corroborated by premature and ectopic AG expression in roxy1-3 ap1-10 double mutants, as well as by enhanced first whorl carpeloidy in double mutants of roxy1 with repressors of AG, such as ap2 or lug. Glutaredoxins are oxidoreductases that oxidize or reduce conserved cysteine-containing motifs. Mutagenesis of conserved cysteines within the ROXY1 protein demonstrates the importance of cysteine 49 for its function. Our data demonstrate that, unexpectedly, a plant glutaredoxin is involved in flower development, probably by mediating post-translational modifications of target proteins required for normal petal organ initiation and morphogenesis.  相似文献   

10.
Specific recognition of Pseudomonas syringae strains that express the avirulence gene avrPphB requires two genes in Arabidopsis, RPS5 and PBS1. Previous work has shown that RPS5 encodes a member of the nucleotide binding site-leucine rich repeat class of plant disease resistance genes. Here we report that PBS1 encodes a putative serine-threonine kinase. Southern blot analysis revealed that the pbs1-1 allele contained a deletion of the 3' end of the PBS1 open reading frame. DNA sequence analysis of the pbs1-2 allele showed it to be a missense mutation that caused a glycine to arginine substitution in the activation segment of PBS1, a region known to regulate substrate binding and catalytic activity in many protein kinases. The identity of PBS1 was confirmed using both transient transformation and stable transformation of mutant pbs1 plants. Comparison of the predicted PBS1 amino acid sequence with other plant protein kinases revealed that PBS1 belongs to a distinct subfamily of protein kinases that contains no other members of known function. The Pto kinase of tomato, which is required for specific resistance to P. syringae strains expressing avrPto, did not fall in the same subfamily as PBS1 and is only 42% identical in the kinase domain. These data suggest that PBS1 and Pto may fulfil different functions in the recognition of pathogen avirulence proteins. We discuss several possible models for the roles of PBS1 and RPS5 in AvrPphB recognition.  相似文献   

11.
12.
13.
14.
Autocatalytic activity of some group II introns has been demonstrated in vitro, but helper functions such as the yeast MRS2 protein are essential for splicing in vivo. In our search for such helper factors in plants, we pursued the cloning of two Arabidopsis thaliana homologues, atmrs2-1 and atmrs2-2. Atmrs2-1, but not atmrs2-2, complements the yeast deletion mutant of mrs2, and this is congruent with the prediction of two adjacent transmembrane stretches in AtMRS2-1 and yeast MRS2 but not in AtMRS2-2. This complementation depends on fusion of the native yeast mitochondrial import sequence to atmrs2-1. A differing, non-mitochondrial, cellular targeting in Arabidopsis is supported by the analysis of green fluorescent protein fusion constructs after transient transformation into plant protoplasts. Further members of what now appears to be a family of 10 mrs2 homologues are identified in the Arabidopsis genome. Similarity searches with the PSI-BLAST algorithm in the protein database fail to identify homologues of this novel gene family in any eukaryotes other than yeasts, but do identify its distant relatedness to the corA group of bacterial magnesium transporters. In line with this observation, intramitochondrial magnesium concentrations are indeed restored to wild-type levels in the yeast mutant on complementation with atmrs2-1.  相似文献   

15.
The class III homeodomain-leucine zipper (HD-Zip III) gene family plays important roles in plant growth and development, including regulation of apical embryo patterning, embryonic shoot meristem formation, leaf polarity, vascular development, and meristem function, with a particularly crucial function in leaf development. Although HD-Zip III members are highly conserved in land plants, previous studies, such as genetic analyses based on multiple mutants in Arabidopsis and other plants, suggest that various HD-Zip III family genes have evolved with distinct functions and pleiotropic effects on plant growth and development. In this study, we analyzed a HD-Zip III member, OsHox33, and demonstrated that it plays an important role in age-dependent leaf senescence in rice. We constructed two specific RNAi vectors derived from the 5′-end region and 3′-UTR of OsHox33 to knockdown its expression. Transgenic plants harboring either RNAi construct displayed similar phenotypes of precocious leaf senescence symptoms, suggesting that knockdown of OsHox33 accelerates leaf senescence in rice. pOsHox33::GUS fusion expression and RT-PCR revealed that OsHox33 is highly expressed in young organs, especially in young meristems such as shoot apical meristems, intercalary meristems, and young callus. In addition, real-time PCR indicated that OsHox33 was more highly expressed in young leaves than in old leaves. To further investigate OsHox33 function, we analyzed chloroplast ultrastructure in different-aged leaves of RNAi plants, and found that OsHox33 knockdown accelerated chloroplast degradation, which is consistent with RNAi phenotypes. Finally, real-time PCR studies showed that OsHox33 can regulate the expression of GS1 and GS2, two senescence-associated genes. Taken together, the work presented here provides new insights into the function of HD-Zip III members in plants.  相似文献   

16.
17.
Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.  相似文献   

18.
Here we report the characterization of a human mRNA encoding a novel protein denoted C1orf9 (chromosome 1 open reading frame 9). The cDNA sequence, derived from a testis cDNA library, contains 5700 bp which encodes an open reading frame of 1254 amino acids. The deduced protein contains a putative N-terminal signal peptide and one putative transmembrane region, indicating membrane localization. No significant homology was found with known characterized proteins. However, a 150 amino acid region has significant homology to deduced protein sequences from other organisms, including Caenorhabditis elegans (43% identity), Saccharomyces cerevisiae (47% identity), Schizosaccharomyces pombe (48% identity), and two proteins from Arabidopsis thaliana (42% and 40% identity), suggesting a novel family of conserved domains. The C1orf9 gene was assigned to chromosome 1q24. The gene spans approximately 78.7 kb and is organized into at least 24 exons. Expression analysis revealed a single C1orf9 mRNA species of approximately 6.0 kb with a predominant expression in pancreas and testis, and only low levels of expression in other tissues examined.  相似文献   

19.
The Arabidopsis monovalent cation:proton antiporter-1 (CPA1) family includes eight members, AtNHX1-8. AtNHX1 and AtNHX7/SOS1 have been well characterized as tonoplast and plasma membrane Na+/H+ antiporters, respectively. The proteins AtNHX2-6 have been phylogenetically linked to AtNHX1, while AtNHX8 appears to be related to AtNHX7/SOS1. Here we report functional characterization of AtNHX8. AtNHX8 T-DNA insertion mutants are hypersensitive to lithium ions (Li+) relative to wild-type plants, but not to the other metal ions such as sodium (Na+), potassium (K+) and caesium (Cs+). AtNHX8 overexpression in a triple-deletion yeast mutant AXT3 that exhibits defective Na+/Li+ transport specifically suppresses sensitivity to Li+, but does not affect Na+ sensitivity. Likewise, AtNHX8 overexpression complemented sensitivity to Li+, but not Na+, in sos1-1 mutant seedlings, and increased Li+ tolerance of both the sos1-1 mutant and wild-type seedlings. Results of Li+ and K+ measurement of loss-of-function and gain-of-function mutants indicate that AtNHX8 may be responsible for Li+ extrusion, and may be able to maintain K+ acquisition and intracellular ion homeostasis. Subcellular localization of the AtNHX8-enhanced green fluorescent protein (EGFP) fusion protein suggested that AtNHX8 protein is targeted to the plasma membrane. Taken together, our findings suggest that AtNHX8 encodes a putative plasma membrane Li+/H+ antiporter that functions in Li detoxification and ion homeostasis in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号