首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A commercial enzyme preparation, originally obtained from a Flavobacterium(Cytophaga), was fractionated by continuous electrophoresis, giving a protein fraction which hydrolysed laminarin, carboxymethylpachyman, barley β-glucan, lichenin and cellodextrin in random fashion. This enzymic activity was not very stable. Ion-exchange chromatography and molecular-sieve chromatography on Bio-Gel P-60 showed that this activity was due to two specific β-glucanases, an endo-β-(1→3)-glucanase and an endo-β-(1→4)-glucanase. The two enzymes occur in both high- and low-molecular-weight forms, the latter endo-β-(1→3)-glucanase having a molecular weight of about 16000.  相似文献   

2.
The ultrastructure of isolated cell walls of Saccharomyces cerevisiae from the log and stationary phases of growth was studied after treatment with the following enzymes: purified endo-β-(1 → 3)-glucanase and endo-β-(1 → 6)-glucanase produced by Bacillus circulans; purified exo-β-glucanase and endo-β-(1 → 3)-glucanase produced by Schizosaccharomyces versatilis; commercial Pronase. While exo-β-glucanase from S. versatilis had no electron microscopically detectable effect on the walls, Pronase removed part of the external amorphous wall material disclosing an amorphous wall layer in which fibrils were indistinctly visible. Amorphous wall material was completely removed by the effect of either endo-β-(1 → 3)- or endo-β-(1 → 6)-glucanase of B. circulans or by a mixture of the two enzymes. As a result of these treatments a continuous fibrillar component appeared, composed of densely interwoven microfibrils resisting further action by both of the B. circulans enzymes. The fibrillar wall component was also demonstrated in untreated cell walls by electron microscopy after negative staining. Because of the complete disappearance of the fibrils following treatment with the S. versatilis endo-β-(1 → 3)-glucanase it can be concluded that this fibrillar component is composed of β-(1 → 3)-linked glucan. Bud scars were the only wall structures resistant to the effect of the latter enzyme.  相似文献   

3.
1. A number of yeast species were examined for the presence of β-glucanases. Extracts obtained by cell disruption of Saccharomyces cerevisiae, Fabospora fragilis and Hansenula anomala hydrolysed laminarin and pustulan with the production of glucose. Enzymic activities were also detected in the culture fluids of F. fragilis and H. anomala grown aerobically in buffered mineral medium with glucose as the carbon source. 2. F. fragilis and H. anomala possessed approximately sevenfold higher β-(1→3)-glucanase activity than S. cerevisiae. 3. Intracellular exo-β-glucanase from baker's yeast was purified 344-fold from the dialysed cell extract. 4. Exo-β-glucanase from F. fragilis was purified 114-fold from the dialysed culture fluid and 423-fold from the dialysed intracellular extract. The purified extracellular and intracellular enzymes had similar properties and essentially the same specific activity, 79 enzyme units/mg. of protein. 5. Extracellular exo-β-glucanase of H. anomala was purified 600-fold. 6. The optimum pH of the enzymes from F. fragilis, S. cerevisiae and H. anomala was 5·5 in each case. Chromatographic evidence indicated that the three enzymes remove glucosyl units sequentially from laminarin as well as pustulan. 7. The ratio of activities towards laminarin and pustulan remained constant during purification of the exo-β-glucanase obtained from the three species, suggesting a single enzyme. Additional evidence for its unienzymic nature are: (i) the two activities were destroyed at exactly the same rate on heating of the purified enzyme from F. fragilis at three different temperatures; (ii) the competitive inhibitor glucono-δ-lactone gave the same value of Ki when tested with either substrate; (iii) quantitative application of the `mixed-substrate' method with the purified enzyme of S. cerevisiae gave data that were in excellent agreement with those calculated on the assumption of a single enzyme. 8. The purified exo-β-glucanases of the different species of yeast had different kinetic constants. The ratios of maximal velocities and Km values with laminarin and pustulan differed markedly. Comparison of Vmax. and Km values suggests that the rapid release of spores from asci in F. fragilis might be explained in terms of an enzyme with higher maximal velocity and higher affinity to the ascus wall than that present in baker's yeast. 9. The estimated molecular weights for exo-β-glucanases from F. fragilis, S. cerevisiae and H. anomala were 22000, 40000 and 30000 respectively.  相似文献   

4.
Sock J  Rohringer R  Kang Z 《Plant physiology》1990,94(3):1376-1389
Endo-β-1,3-glucanase activity in intercellular washing fluid (IWF) from leaves of wheat (Triticum aestivum) increased 10-fold 4 days after leaves were infected with the wheat stem rust fungus (Puccinia graminis f.sp. tritici), while exo-β-1,3-glucanase activity remained unchanged at a low level. Heat and ethylene stress had no effect, whereas mercury treatment resulted in a 2-fold increase in endo-β-1,3-glucanase activity. With a new method of activity staining using laminarin-Remazol brilliant blue as substrate in overlay gels, 18 electrophoretic forms of endo-β-1,3-glucanase were detected in IWF from unstressed leaves and up to 24 forms in IWF from stem rust-infected leaves. Most of the increase in β-1,3-glucanase activity and in the number of β-1,3-glucanases after rust infection was due to a nonspecific, stress-related effect on the plant, but two major forms of the enzyme probably originated from the fungus. β-1,3-Glucanase was localized cytochemically with anti-barley-β-1,3-glucanase antibodies. With preembedding labeling, the enzyme was demonstrated on the outside of host and fungal cell walls. Postembedding labeling localized the enzyme in the host plasmalemma and in the domain of host cell walls adjoining the plasmalemma, throughout walls of intercellular hyphal cells and haustoria, in the fungal cytoplasm, and in the extrahaustorial matrix. Cross-reactivity of β-1,3-glucanases from wheat and germinated uredospores of the rust fungus with the anti-barley-β-1,3-glucanase antibodies was confirmed in dot blot assays and on Western blots.  相似文献   

5.
The biocontrol agent Trichoderma harzianum IMI206040 secretes β-1,3-glucanases in the presence of different glucose polymers and fungal cell walls. The level of β-1,3-glucanase activity secreted was found to be proportional to the amount of glucan present in the inducer. The fungus produces at least seven extracellular β-1,3-glucanases upon induction with laminarin, a soluble β-1,3-glucan. The molecular weights of five of these enzymes fall in the range from 60,000 to 80,000, and their pIs are 5.0 to 6.8. In addition, a 35-kDa protein with a pI of 5.5 and a 39-kDa protein are also secreted. Glucose appears to inhibit the formation of all of the inducible β-1,3-glucanases detected. A 77-kDa glucanase was partially purified from the laminarin culture filtrate. This enzyme is glycosylated and belongs to the exo-β-1,3-glucanase group. The properties of this complex group of enzymes suggest that the enzymes might play different roles in host cell wall lysis during mycoparasitism.  相似文献   

6.
Chitinase and β-1,-3-glucanase activities increased coordinately in pea (Pisum sativum L. cv “Dot”) pods during development and maturation and when immature pea pods were inoculated with compatible or incompatible strains of Fusarium solani or wounded or treated with chitosan or ethylene. Up to five major soluble, basic proteins accumulated in stressed immature pods and in maturing untreated pods. After separation of these proteins by chromatofocusing, an enzymic function could be assigned to four of them: two were chitinases and two were β-1,3-glucanases. The different molecular forms of chitinase and β-1,3-glucanase were differentially regulated. Chitinase Ch1 (mol wt 33,100) and β-1,3-glucanase G2 (mol wt 34,300) were strongly induced in immature tissue in response to the various stresses, while chitinase Ch2 (mol wt 36,200) and β-1,3-glucanase G1 (mol wt 33,500) accumulated during the course of maturation. With a simple, three-step procedure, both chitinases and both β-1,3-glucanases were purified to homogeneity from the same extract. The two chitinases were endochitinases. They differed in their pH optimum, in specific activity, in the pattern of products formed from [3H]chitin, as well as in their relative lysozyme activity. Similarly, the two β-1,3-glucanases were endoglucanases that showed differences in their pH optimum, specific activity, and pattern of products released from laminarin.  相似文献   

7.
Cell-free extracts, membranous fractions, and cell wall preparations from Schizosaccharomyces pombe were examined for the presence of (1 → 3)-β-, (1 → 3)-α-, and (1 → 6)-β-glucanase activities. The various glucanases were assayed in cells at different growth stages. Only (1 → 3)-β-glucanase activity was found, and this was associated with the cell wall fraction. Chromatographic fractionation of the crude enzyme revealed two endo-(1 → 3)-β-glucanases, designated as glucanase I and glucanase II. Glucanase I consisted of two subunits of molecular weights 78,500 and 82,000, and glucanase II was a single polypeptide of 75,000. Although both enzymes had similar substrate specificities and similar hydrolytic action on laminarin, glucanase II had much higher hydrolytic activity on isolated cell walls of S. pombe. On the basis of differential lytic activity on cell walls, glucanase II was shown to be present in conjugating cells and highest in sporulating cells. Glucanase II appeared to be specifically involved in conjugation and sporulation since vegetative cells and nonconjugating and nonsporulating cells did not contain this enzyme. The appearance of glucanase II in conjugating cells may be due to de novo enzyme synthesis since no activation could be demonstrated by combining extracts from vegetative and conjugating cells. Increased glucanase activity occurred when walls from conjugating cells were combined with walls from sporulating cells. Studies with trypsin and proteolytic inhibitors suggest that glucanase II exists as a zymogen in conjugating cells. A temperature-sensitive mutant of S. pombe was isolated which lysed at 37°C. Glucanase activity was higher in vegetative cells held at 37°C than cells held at 25°C. Unlike the wild-type strain, this mutant contained glucanase II activity during vegetative growth and may be a regulatory mutant.  相似文献   

8.
Polyclonal antibodies raised against barley (1→3,1→4)-β-d-glucanase, α-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley. In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding α-amylase or (1→3,1→4)-β-d-glucanase, while in the aleurone α-amylase and (1→3,1→4)-β-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1→3,1→4)-β-d-glucanase, α-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation products were identical for each enzyme.  相似文献   

9.
Inoculation of mature leaves of turnip (Brassica campestris) with the incompatible Xanthomonas campestris pv vitians resulted in the induction of β-1,3-glucanase and chitinase/lysozyme (CHL) activity. No increase in the basal activity of β-1,3-glucanase was observed after inoculation of leaves with heat- or rifampicin-killed X. c. vitians, Escherichia coli, or sterile water. Inoculation with the compatible X. campestris pv campestris resulted in a slower induction of glucanase than that seen with X. c. vitians. In contrast, all bacteria caused an induction of CHL activity. One major β-1,3-glucanase (molecular mass 36.5 kilodaltons, isoelectric point [pl] ~8.5) was purified from both inoculated and untreated leaves by ion-exchange chromatography. The enzyme degraded laminarin by an endo-glycolytic mechanism. Two major CHL isozymes (CHL 1 and CHL 2, molecular mass 30 kilodaltons and pl 9.4 and 10.2, respectively) were purified from X. c. vitians inoculated leaves by affinity chromatography on a chitin column followed by ion-exchange chromatography. Both enzymes degraded chitin by an endo-glycolytic mechanism although the ratio of lysozyme to chitinase specific activities for CHL 1 and CHL2 were different. The induction of CHL 1 was associated with the hypersensitive reaction caused by X. c. vitians whereas all other treatments induced largely CHL 2.  相似文献   

10.
Inoculation of tomato (Lycopersicon esculentum) leaves with Cladosporium fulvum (Cooke) (syn. Fulvia fulva [Cooke] Cif) results in a marked accumulation of several pathogenesis-related (PR) proteins in the apoplast. Two predominant PR proteins were purified from apoplastic fluid by ion exchange chromatography followed by chromatofocusing. One protein (molecular mass [Mr] 35 kilodaltons [kD], isoelectric point [pI] ~6.4) showed 1,3-β-glucanase activity, while the other one (Mr26 kD, pI ~6.1) showed chitinase activity. Identification of the products that were released upon incubation of the purified enzymes with laminarin or regenerated chitin revealed that both enzymes showed endo-activity. Using antisera raised against these purified enzymes from tomato and against chitinases and 1,3-β-glucanases isolated from other plant species, one additional 1,3-β-glucanase (Mr33 kD) and three additional chitinases (Mr 27, 30, and 32 kD) could be detected in apoplastic fluids or homogenates of tomato leaves inoculated with C. fulvum. Upon inoculation with C. fulvum, chitinase and 1,3-β-glucanase activity in apoplastic fluids increased more rapidly in incompatible interactions than in compatible ones. The role of these hydrolytic enzymes, potentially capable of degrading hyphal walls of C. fulvum, is discussed in relation to active plant defense.  相似文献   

11.
Laminarinase is commonly used to describe β-1,3-glucanases widespread throughout Archaea, bacteria, and several eukaryotic lineages. Some β-1,3-glucanases have already been structurally and biochemically characterized, but very few from organisms that are in contact with genuine laminarin, the storage polysaccharide of brown algae. Here we report the heterologous expression and subsequent biochemical and structural characterization of ZgLamAGH16 from Zobellia galactanivorans, the first GH16 laminarinase from a marine bacterium associated with seaweeds. ZgLamAGH16 contains a unique additional loop, compared with other GH16 laminarinases, which is composed of 17 amino acids and gives a bent shape to the active site cleft of the enzyme. This particular topology is perfectly adapted to the U-shaped conformation of laminarin chains in solution and thus explains the predominant specificity of ZgLamAGH16 for this substrate. The three-dimensional structure of the enzyme and two enzyme-substrate complexes, one with laminaritetraose and the other with a trisaccharide of 1,3–1,4-β-d-glucan, have been determined at 1.5, 1.35, and 1.13 Å resolution, respectively. The structural comparison of substrate recognition pattern between these complexes allows the proposition that ZgLamAGH16 likely diverged from an ancestral broad specificity GH16 β-glucanase and evolved toward a bent active site topology adapted to efficient degradation of algal laminarin.  相似文献   

12.
Preparations of DNA from wheat (Triticum aestivum, cv Chinese Spring), barley (Hordeum vulgare, cv Betzes) and six euplasmic wheat-barley addition lines were digested to completion with restriction endonucleases and the products probed by Southern blot analysis using a cDNA-encoding barley (1→3, 1→4)-β-glucanase isoenzyme II. It is shown that one of the barley (1→3, 1→4)-β-glucanase genes is located on chromosome 1.  相似文献   

13.
A cellulase gene of Clostridium thermocellum was transferred to Escherichia coli by molecular cloning with bacteriophage lambda and plasmid vectors and shown to be indentical with the celA gene. The celA gene product was purified from extracts of plasmid-bearing E. coli cells by heat treatment and chromatography on DEAE-Trisacryl. It was characterized as a thermophilic endo-β-1,4-glucanase, the properties of which closely resemble those of endoglucanase A previously isolated from C. thermocellum supernatants. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme purified from E. coli exhibited two protein bands with molecular weights of 49,000 and 52,000. It had a temperature optimum at 75°C and was stable for several hours at 60°C. Endoglucanase activity was optimal between pH 5.5 and 6.5. The enzyme was insensitive against end product inhibition by glucose and cellobiose and remarkably resistant to the denaturing effects of detergents and organic solvents. It was capable of degrading, in addition to cellulosic substrates, glucans with alternating β-1,4 and β-1,3 linkages such as barley β-glucan and lichenan.  相似文献   

14.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

15.
An endoglucanase was isolated from cell walls of Zea mays seedlings. Characterization of the hydrolytic activity of this glucanase using model substrates indicated a high specificity for molecules containing intramolecular (1→3),(1→4)-β-d-glucosyl sequences. Substrates with (1→4)-β-glucosyl linkages, such as carboxymethylcellulose and xyloglucan were, degraded to a limited extent by the enzyme, whereas (1→3)-β-glucans such as laminarin were not hydrolyzed. When (1→3),(1→4)-β-d-glucan from Avena endosperm was used as a model substrate a rapid decrease in vicosity was observed concomitant with the formation of a glucosyl polymer (molecular weight of 1-1.5 × 104). Activity against a water soluble (1→3),(1→4)-β-d-glucan extracted from Zea seedling cell walls revealed the same depolymerization pattern. The size of the limit products would indicate that a unique recognition site exists at regular intervals within the (1→3),(1→4)-β-d-glucan molecule. Unique oligosaccharides isolated from the Zea (1→3),(1→4)-β-d-glucan that contained blocks of (1→4) linkages and/or more than a single contiguous (1→3) linkage were hydrolyzed by the endoglucanase. The unique regions of the (1→3),(1→4)-β-d-glucan may be the recognition-hydrolytic site of the Zea endoglucanase.  相似文献   

16.
An endo-β-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1–20, a catalytic domain of glycoside hydrolase family 7 (GH7), a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1). The purified recombinant Cel7A had pH and temperature optima of pH 5.0 and 60°C, respectively, and showed broad pH adaptability (pH 3.0–6.0) and excellent stability at pH3.0–8.0 and 60°C. Belonging to the group of nonspecific endoglucanases, Cel7A exhibited the highest activity on barley β-glucan (2020 ± 9 U mg–1), moderate on lichenan and CMC-Na, and weak on laminarin, locust bean galactomannan, Avicel, and filter paper. Under simulated mashing conditions, addition of Cel7A (99 μg) reduced the mash viscosity by 9.1% and filtration time by 24.6%. These favorable enzymatic properties make Cel7A as a good candidate for applications in the brewing industry.  相似文献   

17.
This paper reports on the effects of both reducing and nonreducing transgalactooligosaccharides (TOS) comprising 2 to 8 residues on the growth of Bifidobacterium adolescentis DSM 20083 and on the production of a novel β-galactosidase (β-Gal II). In cells grown on TOS, in addition to the lactose-degrading β-Gal (β-Gal I), another β-Gal (β-Gal II) was detected and it showed activity towards TOS but not towards lactose. β-Gal II activity was at least 20-fold higher when cells were grown on TOS than when cells were grown on galactose, glucose, and lactose. Subsequently, the enzyme was purified from the cell extract of TOS-grown B. adolescentis by anion-exchange chromatography, adsorption chromatography, and size-exclusion chromatography. β-Gal II has apparent molecular masses of 350 and 89 kDa as judged by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating that the enzyme is active in vivo as a tetramer. β-Gal II had an optimal activity at pH 6 and was not active below pH 5. Its optimum temperature was 35°C. The enzyme showed highest Vmax values towards galactooligosaccharides with a low degree of polymerization. This result is in agreement with the observation that during fermentation of TOS, the di- and trisaccharides were fermented first. β-Gal II was active towards β-galactosyl residues that were 1→4, 1→6, 1→3, and 1↔1 linked, signifying its role in the metabolism of galactooligosaccharides by B. adolescentis.  相似文献   

18.
Trichoderma asperellum produces at least two extracellular beta-1,3-glucanases upon induction with cell walls from Rhizoctonia solani. A beta-1,3-glucanase was purified by gel filtration and ion exchange chromatography. A typical procedure provided 35.7-fold purification with 9.5% yield. The molecular mass of the purified exo-beta-1,3-glucanases was 83.1 kDa as estimated using a 12% (w/v) SDS-electrophoresis slab gel. The enzyme was only active toward glucans containing beta-1,3-linkages and hydrolyzed laminarin in an exo-like fashion to form glucose. The K(m) and V(max) values for exo-beta-1,3-glucanase, using laminarin as substrate, were 0.087 mg ml(-1) and 0.246 U min(-1), respectively. The pH optimum for the enzyme was pH 5.1 and maximum activity was obtained at 55 degrees C. Hg(2+) strongly inhibited the purified enzyme.  相似文献   

19.
To isolate chitinases and β-1,3-glucanases from the intercellular space of oats (Avena sativa L.), primary leaves were infiltrated with buffer and subjected to gentle centrifugation to obtain intercellular washing fluid (IWF). Approximately 5% of the chitinase and 10% of the β-1,3-glucanase activity of the whole leaf were released. Only small amounts (0.01-0.03%) of the intracellular marker malate-dehydrogenase were released into the IWF during infiltration. Activities of chitinase and β-1,3-glucanase in the IWF and in the leaf extract were compared by different chromatographic methods. On Sephadex G-75, chitinase appeared as a single peak (Mr 29.8 kD) both in IWF and homogenate. β-1,3-Glucanase, however, showed two peaks in the IWF (Mr 52 and 31.3 kD), whereas the elution pattern of the homogenate showed only one major peak at 22 kD. Chromatofocusing indicated that the IWF contained four chitinases and five β-1,3-glucanases. The elution pattern of the homogenate and IWF were similar with regard to the elution pH, but the peak intensities were distinctly different. Our results demonstrate that extracellular β-1,3-glucanases are different from those located intracellularly. Extracellular and intracellular chitinases do not differ in molecular properties, except for one isozyme which seems to be confined to the extracellular space. We suggest that both enzymes might play a special role in pathogenesis during fungal infection.  相似文献   

20.
Trichoderma harzianum secretes α-1,3-glucanases when it is grown on polysaccharides, fungal cell walls, or autoclaved mycelium as a carbon source (simulated antagonistic conditions). We have purified and characterized one of these enzymes, named AGN13.1. The enzyme was monomeric and slightly basic. AGN13.1 was an exo-type α-1,3-glucanase and showed lytic and antifungal activity against fungal plant pathogens. Northern and Western analyses indicated that AGN13.1 is induced by conditions that simulated antagonism. We propose that AGN13.1 contributes to the antagonistic response of T. harzianum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号