首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The early events regulating antiviral CD4 responses were tracked using an adoptive transfer model. CD4+ T cell expansion was nonlinear, with a lengthy lag phase followed by 2 days of explosive proliferation. A small number of naive Ag-specific CD4+ T cells were found in nonlymphoid tissues and, in the 8 days following infection, the number of activated cells increased in all tissues analyzed, and their effector functions matured. Finally, we show that a naive mouse contains approximately 100 naive CD4+ precursor cells specific for a single epitope, a precursor frequency of approximately 10(-5), similar to that of naive CD8+ T cells, indicating that the approximately 50-fold difference in size of the two responses to virus infection is determined by something other than the number of precursor cells.  相似文献   

2.
3.
Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone recognized dengue virus types 1, 2, and 3. Four dengue virus serotype-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4. One flavivirus-cross-reactive clone recognized dengue virus types 1, 2, 3, and 4 and West Nile virus (WNV), but did not recognize yellow fever virus (YFV), whereas three flavivirus-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4, WNV, and YFV. HLA restriction in the lysis by these T-cell clones was also heterogeneous. HLA-DP, HLA-DQ, and HLA-DR were used as restriction elements by various T-cell clones. We also examined the recognition of viral nonstructural protein NS3, purified from cells infected with dengue virus type 3 or WNV, by these T-cell clones. One serotype-specific clone, two dengue virus subcomplex-specific clones, and three dengue virus serotype-cross-reactive clones recognized NS3 of dengue virus type 3. One flavivirus-cross-reactive clone recognized NS3 of dengue virus type 3 and WNV. These results indicate that heterogeneous dengue virus-specific CD4+ cytotoxic T cells are stimulated in response to infection with a dengue virus and that a nonstructural protein, NS3, contains multiple dominant T-cell epitopes.  相似文献   

4.
Gut-associated lymphoid tissue is the major reservoir of lymphocytes and human immunodeficiency virus type 1 (HIV-1) replication in vivo, yet little is known about HIV-1-specific CD8+ T-lymphocyte (CTL) responses in this compartment. Here we assessed the breadth and magnitude of HIV-1-specific CTL in the peripheral blood and sigmoid colon mucosa of infected subjects not on antiretroviral therapy by enzyme-linked immunospot analysis with 53 peptide pools spanning all viral proteins. Comparisons of blood and mucosal CTL revealed that the magnitude of pool-specific responses is correlated within each individual (mean r2 = 0.82 +/- 0.04) and across all individuals (r2 = 0.75; P < 0.001). Overall, 85.1% of screened peptide pools yielded concordant negative or positive results between compartments. CTL targeting was also closely related between blood and mucosa, with Nef being the most highly targeted (mean of 2.4 spot-forming cells [SFC[/10(6) CD8+ T lymphocytes/amino acid [SFC/CD8/aa]), followed by Gag (1.5 SFC/CD8/aa). Finally, comparisons of peptide pool responses seen in both blood and mucosa (concordant positives) versus those seen only in one but not the other (discordant positives) showed that most discordant results were likely an artifact of responses being near the limit of detection. Overall, these results indicate that HIV-1-specific CTL responses in the blood mirror those seen in the mucosal compartment in natural chronic infection. For protective or immunotherapeutic vaccination, it will be important to determine whether immunity is elicited in the mucosa, which is a key site of initial infection and subsequent HIV-1 replication in vivo.  相似文献   

5.
Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4+ and CD8+ T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4+ T-cell response (NYVAC). Remarkably, vector-induced differences in CD4+/CD8+ T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4+ T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4+ T-cell responses showed efficacies similar to those with stronger CD8+ T-cell responses.  相似文献   

6.
CCR5 expression determines susceptibility to infection, cell tropism, and the rate of human immunodeficiency virus type 1 (HIV-1) disease progression. CCR5 is also considered the major HIV-2 coreceptor in vivo, in spite of broad coreceptor use in vitro. Here we report a significantly increased proportion of memory-effector CD4 T cells expressing CCR5 in HIV-2-infected patients correlating with CD4 depletion. Moreover, HIV-2 proviral DNA was essentially restricted to memory-effector CD4, suggesting that this is the main target for HIV-2. Similar levels of proviral DNA were found in the two infection categories. Thus, the reduced viremia and slow rate of CD4 decline that characterize HIV-2 infection seem to be unrelated to coreceptor availability.  相似文献   

7.
In an attempt to understand the mechanisms of immunodeficiency induced by human T lymphotropic virus type I (HTLV-I), HSV-specific CD4+ human multifunctional T cell clones were infected with HTLV-I in vitro. Early after HTLV-I infection, when their growth was still IL-2-dependent, clones were found to have almost completely lost their cytotoxic activity. At that time, their HSV-Ag-induced proliferative response and helper function for anti-HSV antibody production by B cells were only partially impaired. After this initial phase, the HTLV-I-infected clone became IL-2-independent, and the helper function was also completely lost. IL-2-dependent HTLV-I-infected clones showed degrees of proliferative response and elevation of intracellular free Ca2+ concentration induced by anti-CD3 mAb equivalent to those of HTLV-I-uninfected clones. On the other hand, during the IL-2-independent stage, expression of CD3-TCR complex on the cell surface was markedly decreased, and no significant elevation of intracellular free Ca2+ concentration was detected in response to anti-CD3 mAb. These data indicated that the loss of cytotoxic activity of HSV-specific T cell clones observed early after HTLV-I infection was not the result of impaired antigen recognition via the CD3-TCR complex, but might be due to dysfunction in the effector phase. On the other hand, the dysfunction of helper activity found late after HTLV-I infection might have mainly occurred in the recognition phase due to the decreased expression of CD3-TCR complex. The present data appear to suggest certain aspects of the pathogenesis of the immunodeficiency occurring in HTLV-I infection.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) evades CD8(+) T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8(+) T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8(+) T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8(+) T cells, four of which underwent mutation associated with dramatic loss of the original CD8(+) response. However, following the G(357)S escape in the HLA-A11-restricted Gag(349-359) epitope and the decline of wild-type-specific CD8(+) T-cell responses, a novel CD8(+) T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8(+) T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vbeta repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G(357)S escape variant of the Gag(349-359) epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8(+) T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8(+) T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.  相似文献   

9.
We analyzed the CD4+ T-lymphocyte response of a donor who had received an experimental live-attenuated dengue 4 virus (D4V) vaccine. Bulk culture proliferative responses of peripheral blood mononuclear cells (PBMC) to noninfectious dengue virus (DV) antigens showed the highest proliferation to D4V antigen, with lesser, cross-reactive proliferation to D2V antigen. We established CD4+ cytotoxic T-lymphocyte clones (CTL) by stimulation with D4 antigen. Using recombinant baculovirus antigens, we identified seven CTL clones that recognized D4V capsid protein. Six of these CTL clones were cross-reactive between D2 and D4, and one clone was specific for D4. Using synthetic peptides, we found that the D4V-specific CTL clone recognized an epitope between amino acids (aa) 47 and 55 of the capsid protein, while the cross-reactive CTL clones each recognized epitopes in a separate location, between aa 83 and 92, which is conserved between D2V and D4V. This region of the capsid protein induced a variety of CD4+ T-cell responses, as indicated by the fact that six clones which recognized a peptide spanning this region showed heterogeneity in their recognition of truncations of this same peptide. The bulk culture response of the donor's PBMC to the epitope peptide spanning aa 84 to 92 was also examined. Peptides containing this epitope induced proliferation of the donor's PBMC in bulk culture, but peptides not containing the entire epitope did not induce proliferation. Also, PBMC stimulated in bulk culture with noninfectious D4V antigen lysed autologous target cells pulsed with peptides containing aa 84 to 92. These results indicate that this donor exhibits memory CD4+ T-cell responses directed against the DV capsid protein and suggest that the response to the capsid protein is dominant not only in vitro at the clonal level but in bulk culture responses as well. Since previous studies have indicated that the CTL responses to DV infection seem to be directed mainly against the envelope (E) and NS3 proteins, these results are the first to indicate that the DV capsid protein is also a target of the antiviral T-cell response.  相似文献   

10.
Because the vaccine vectors currently being evaluated in human populations all have significant limitations in their immunogenicity, novel vaccine strategies are needed for the elicitation of cell-mediated immunity. The nonpathogenic, rapidly growing mycobacterium Mycobacterium smegmatis was engineered as a vector expressing full-length human immunodeficiency virus type 1 (HIV-1) HXBc2 envelope protein. Immunization of mice with recombinant M. smegmatis led to the expansion of major histocompatibility complex class I-restricted HIV-1 epitope-specific CD8(+) T cells that were cytolytic and secreted gamma interferon. Effector and memory T lymphocytes were elicited, and repeated immunization generated a stable central memory pool of virus-specific cells. Importantly, preexisting immunity to Mycobacterium bovis BCG had only a marginal effect on the immunogenicity of recombinant M. smegmatis. This mycobacterium may therefore be a useful vaccine vector.  相似文献   

11.
The most severe human immunodeficiency virus type 1 (HIV-1) epidemic is occurring in southern Africa. It is caused by HIV-1 subtype C (HIV-1C). In this study we present the identification and analysis of cumulative cytotoxic T-lymphocyte (CTL) responses in the southern African country of Botswana. CTLs were shown to be an important component of the immune response to control HIV-1 infection. The definition of optimal and dominant epitopes across the HIV-1C genome that are targeted by CTL is critical for vaccine design. The characteristics of the predominant virus that causes the HIV-1 epidemic in a certain geographic area and also the genetic background of the population, through the distribution of common HLA class I alleles, might impact dominant CTL responses in the vaccinee and in the general population. The enzyme-linked immunospot (Elispot) gamma interferon assay has recently been shown to be a reliable tool to map optimal CTL epitopes, correlating well with other methods, such as intracellular staining, tetramer staining, and the classical chromium release assay. Using Elispot with overlapping synthetic peptides across Gag, Tat, Rev, and Nef, we analyzed HIV-1C-specific CTL responses of HIV-1-infected blood donors. Profiles of cumulative Elispot-based CTL responses combined with diversity and sequence consensus data provide an additional characterization of immunodominant regions across the HIV-1C genome. Results of the study suggest that the construction of a poly-epitope subtype-specific HIV-1 vaccine that includes multiple copies of immunodominant CTL epitopes across the viral genome, derived from predominant HIV-1 viruses, might be a logical approach to the design of a vaccine against AIDS.  相似文献   

12.
We previously reported that the clone JK34 was cross-reactive for dengue virus types 1, 2, 3, and 4 and recognized NS3 (I. Kurane, M. A. Brinton, A. L. Samson, and F. A. Ennis, J. Virol. 65:1823-1828, 1991). In the present experiments, we defined the epitope at the amino acid level, with 93 15-mer overlapping peptides which cover the entire NS3. A peptide 4 which contains amino acids 251 to 265 of NS3 sensitized the autologous B lymphoblastoid cell line (LCL) to the lysis by JK34. The smallest peptide recognized by JK34 was a 10-mer peptide which contains amino acids 255 to 264 (EIVDLMCHAT). A monoclonal antibody to HLA-DP inhibited the lysis of epitope peptide-pulsed autologous LCL by JK34. Genotypic typing revealed that the HLA-DP of this donor is DPA1*01, DPB1*0201, which is serologically defined as HLA-DPw2. JK34 lysed peptide 4-pulsed allogeneic LCL which carried HLA-DPw2. These results indicate that HLA-DPw2 is the restriction allele for recognition of this epitope by JK34.  相似文献   

13.
R I Connor  H Mohri  Y Cao    D D Ho 《Journal of virology》1993,67(4):1772-1777
The rate of clinical progression is variable among individuals infected with human immunodeficiency virus type 1 (HIV-1). Changes in viral burden which correlate with disease status have been demonstrated in cross-sectional studies; however, a detailed longitudinal study of the temporal relationship between viral burden, CD4+ T-cell numbers, and clinical status throughout the course of infection has not been reported. Multiple longitudinal blood samples were obtained from four HIV-1-infected individuals with clinically divergent profiles. Levels of HIV-1 were measured in sequential samples of peripheral blood mononuclear cells, using both end-point dilution cultures and quantitative polymerase chain reaction methods. Serial HIV-1 isolates from each case were also evaluated to determine their biological properties in vitro. For the three patients with clinical progression, a dramatic increase in the level of HIV-1 was observed concurrent with or prior to a marked drop in CD4+ T lymphocytes. This increase in viral burden was temporally associated with the emergence of a more cytopathic viral phenotype. In contrast, consistently low levels of HIV-1 were observed in the one patient who was clinically and immunologically stable for more than a decade. Moreover, viral isolates from this patient were less cytopathic in vitro compared with HIV-1 isolates from those patients with disease progression. The temporal association between increased viral burden and CD4+ T-cell decline suggests a direct role for HIV-1 in the cytopathology of CD4+ T cells in vivo. Our results indicate that the pathogenic mechanisms responsible for CD4+ T-cell depletion may be related to both quantitative and qualitative changes in HIV-1.  相似文献   

14.
Functional hepatitis B virus (HBV)-specific T cells are significantly diminished in individuals chronically infected with HBV compared to individuals with self-limiting HBV infection or those on anti-HBV therapy. In individuals infected with human immunodeficiency virus type 1 (HIV-1), coinfection with HBV is associated with an increased risk of worsening liver function following antiviral therapy and of more rapid HBV disease progression. Total HBV-specific T-cell responses in subjects with diverse genetic backgrounds were characterized by using a library of 15-mer peptides overlapping by 11 amino acids and spanning all HBV proteins. The magnitude and breadth of CD4(+) and CD8(+) T-cell responses to HBV in peripheral blood were examined by flow cytometry to detect gamma interferon production following stimulation with HBV peptide pools. Chronic HBV carriers (n = 34) were studied, including individuals never treated for HBV infection (n = 7), HBV-infected individuals receiving anti-HBV therapy (n = 13), and HIV-1-HBV-coinfected individuals receiving anti-HBV therapy (n = 14). CD4(+) and CD8(+) HBV-specific T-cell responses were more frequently detected and the CD8(+) T-cell responses were of greater magnitude and breadth in subjects on anti-HBV treatment than in untreated chronic HBV carriers. There was a significant inverse correlation between detection of a HBV-specific T-cell response and HBV viral load. HBV-specific CD4(+) and CD8(+) T-cell responses were significantly (fivefold) reduced compared with HIV-specific responses. Although, the frequency and breadth of HBV-specific CD8(+) T-cell responses were comparable in the monoinfected and HIV-1-HBV-coinfected groups, HBV-specific CD4(+) T-cell responses were significantly reduced in HIV-1-HBV-coinfected individuals. Therefore, HIV-1 infection has a significant and specific effect on HBV-specific T-cell immunity.  相似文献   

15.
We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4(+)-T-cell responses. To better characterize the CD8(+)-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8(+)-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8(+)-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8(+)-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8(+)-T-cell epitope recognition after the boost.  相似文献   

16.
Virus-specific CD4+ T-cell responses are thought to be required for the induction and maintenance of many effective CD8+ T-cell and B-cell immune responses in experimental animals and humans. Although the presence of human immunodeficiency virus (HIV)-specific CD4+ T cells has been documented in patients at all stages of HIV infection, many fundamental questions regarding their frequency and function remain. A 10-color, 12-parameter flow cytometric panel was utilized to examine the frequency, memory phenotype (CD27, CCR7, and CD45RA), and cytokine production (interleukin-2 [IL-2], gamma interferon, and tumor necrosis factor alpha) of CD4+ T cells specific for HIV antigens as well as for adenovirus, Epstein-Barr virus (EBV), influenza H1N1 virus, influenza H3N2 virus, cytomegalovirus, varicella-zoster virus (VZV), and tetanus toxoid in normal controls, long-term nonprogressors (LTNP), and HIV-infected patients with progressive disease on or off therapy. The HIV-specific CD4+ T-cell responses in LTNP and patients on therapy were similar in frequency, phenotype, and cytokine production to responses directed against adenovirus, EBV, influenza virus, and VZV. HIV-specific CD4+ T cells from patients off antiretroviral therapy demonstrated a shift towards a CCR7(-) CD45RA(-) phenotype and a reduced percentage of IL-2-producing cells. The alterations in cytokine production during HIV viremia were found to be intrinsic to the HIV-specific CD4+ T cells and caused a requirement for IL-2 supplied exogenously for proliferation to occur. These observations suggest that many previously described changes in HIV-specific CD4+ T-cell function and phenotype are a consequence of high levels of antigen in viremic patients. In addition, defects in function and phenotype of HIV-specific CD4+ T cells are not readily discernible in the context of antiretroviral therapy but rather are similar to responses to other viruses.  相似文献   

17.
Analysis of major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) capable of killing human immunodeficiency virus type 1 (HIV-1)-infected targets is essential for elucidating the basis for HIV-1 disease progression and the potential efficacy of candidate vaccines. The use of primary CD4+ T cells with variable infectivity as targets for such studies has significant limitations, and immortal autologous cells with high levels of CD4 expression that can be consistently infected with HIV-1 would be of much greater utility. Therefore, we transduced Epstein-Barr-virus-transformed B-lymphoblastoid cell lines (LCL) with a retroviral vector, LT4SN, containing the human CD4 gene. Stable LCL in which more than 95% of cells expressed membrane CD4 were obtained. Aliquots were infected with HIV-1, and, after 4 to 7 days, nearly all of the cells contained cytoplasmic gag and produced high levels of p24 antigen. The ability of major histocompatibility complex-restricted CD8+ CTL to lyse such HIV-1-infected CD4-transduced LCL (LCL-CD4HIV-1) was evaluated. These autologous targets were lysed by CTL generated from an HIV-1-uninfected vaccinee over a broad range of effector-to-target ratios. Similarly, the LCL-CD4HIV-1 were efficiently lysed by fresh circulating CTL from HIV-1-infected individuals, as well as by CTL activated by in vitro stimulation. Both HIV-1 env- and gag-specific CTL effectors lysed LCL-CD4HIV-1, consistent with the cellular expression of both HIV-1 genes. The LCL-CD4HIV also functioned as stimulator cells, and thus are capable of amplifying CTL against multiple HIV-1 gene products in HIV-1-infected individuals. The ability to produce HIV-1-susceptible autologous immortalized cell lines that can be employed as target cells should enable a more detailed evaluation of vaccine-induced CTL against both homologous and disparate HIV-1 strains. Furthermore, the use of LCL-CD4HIV-1 should facilitate the analysis of the range of HIV-1 gene products recognized by CTL in seropositive persons.  相似文献   

18.
Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of approximately 3,200 proteins in the CD4(+) CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.  相似文献   

19.
A CD4+ cytotoxic T-lymphocyte (CTL) clone, established from the peripheral blood of a human immunodeficiency virus (HIV)-seropositive donor, lysed autologous target cells that were infected with a recombinant vaccinia virus containing the gag gene of HIV type 1 and target cells pulsed with p24gag construct expressed in Escherichia coli. The recognition of the HLA-DQ-restricted epitope by this clone was further defined by using overlapping synthetic peptides. The epitope recognized by this CD4+ CTL clone (amino acids 140 to 148) overlaps with a CD8+ epitope and is highly conserved among all isolates of HIV type 1 that have been sequenced. Production and secretion of lymphokines such as interleukin-2 and interleukin-6 after specific antigenic stimulation were demonstrated by this gag-specific CD4+ CTL clone.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) mutates to escape immune selection pressure, but there is little evidence of selection mediated through HLA-A2, the dominant class I allele in persons infected with clade B virus. Moreover, HLA-A2-restricted responses are largely absent in the acute phase of infection as the viral load is being reduced, suggesting that circulating viruses may lack immunodominant epitopes targeted through HLA-A2. Here we demonstrate an A2-restricted epitope within Vpr (Vpr59-67) that is targeted by acute-phase HIV-1-specific CD8+ T cells, but only in a subset of persons expressing HLA-A2. Individuals in the acute stage of infection with viruses containing the most common current sequence within this epitope (consensus sequence) were unable to mount epitope-specific T-cell responses, whereas subjects infected with the less frequent I60L variant all developed these responses. The I60L variant epitope was a stronger binder to HLA-A2 and was recognized by epitope-specific T cells at lower peptide concentrations than the consensus sequence epitope. These data demonstrate that HLA-A2 is capable of contributing to the acute-phase cytotoxic T-lymphocyte response in infected subjects, but that most currently circulating viruses lack a dominant immunogenic epitope presented by this allele, and suggest that immunodominant epitopes restricted by common HLA alleles may be lost as the epidemic matures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号