首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
The proteolytic activity and thermal stability of the enzyme complex of cell suspension from pig and bovine pancreas glands was compared with those of pancreatin. The enzyme complex displayed the highest thermal stability and activity at 50 degrees C. The kinetic constants, energies of activation and inactivation of the enzyme complex, and pH optimum (7.0 +/- 0.1) at which this complex had the maximum proteolytic activity were determined. Pancreatin had a pH optimum of 8.0 +/- 0.1.  相似文献   

2.
The proteolytic activity and thermal stability of the enzyme complex of a cell suspension from pig and bovine pancreas glands was compared with those of pancreatin. The enzyme complex displayed the highest thermal stability and activity at 50°C. The kinetic constants, energies of activation and inactivation of the enzyme complex, and pH optimum (7.0 ± 0.1) at which this complex had the maximum proteolytic activity were determined. Pancreatin had a pH optimum of 8.0 ±0.1.  相似文献   

3.
Irreversible thermal inactivation of the tetrameric form of human plasma butyrylcholinesterase (cholinesterase; EC 3.1.1.8) was studied in water and in deuterium oxide at pH 7 in the temperature range 53-65 degrees C. The enzyme inactivation follows a complex kinetics that may be described by the sum of two apparent first-order processes. The Eyring plot for enzyme inactivation exhibits a wavelike discontinuity over a span of 2 C degrees around 58 degrees C. This transition was interpreted in terms of equilibrium between two temperature-dependent conformational states. Though 2H2O does not alter the overall multistep inactivation process, a slight solvent isotope effect was observed: a stabilizing effect and a shift in the transition temperature. A comparison between several enzyme preparations revealed differences in thermodynamic activation parameters of inactivation suggesting microheterogeneity in enzyme structures. Kinetics of inactivation of usual (E1uE1u) and atypical (E1aEa1a++) enzymes were compared. The atypical enzyme was found to be more stable than the usual phenotype.  相似文献   

4.
The inactivation kinetics of glucoso-6-phosphate dehydrogenase (GPDH) and its complexes with glucoso-6-phosphate and NADP+ was characterized in aqueous solutions at 36-47 degrees C under treatment with low frequency (27 kHz, 60 W/cm2) and high frequency ultrasound (880 kHz, 1 W/cm2). To this end, we measured three effective first-order inactivation rate constants: thermal k(in)* , total (thermal and ultrasonic) kin, and ultrasonic kin (US). The values of the constants were found to be higher for the free enzyme than for its complexes GP-DH-GP and GPDH-NADP+ at all temperatures, which confirms the enzyme stabilization by its substrate and cofactor under both thermal and ultrasonic inactivation. Effective values of the activation energies (Ea) were determined and the preexponential factors of the rate constants and thermodynamic activation parameters of inactivation processes (deltaH*, deltaS*, and deltaG*) were calculated from the temperature dependences of the inactivation rate constants of GPDH and its complexes. The sonication of aqueous solutions of free GPDH and its complexes was accompanied by a reduction of Ea and deltaH* values in comparison with the corresponding values for thermal inactivation. The Ea, deltaH*, and deltaS* inactivation values for GPDH are lower than the corresponding values for its complexes. A linear dependence between the growth of the deltaH* and deltaS* values was observed for all the inactivation processes for free GPDH and its complexes.  相似文献   

5.
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.  相似文献   

6.
Trehalose and glycerol are known as good stabilizers of function and structure of several macromolecules against stress conditions. We previously reported that they have comparable effectiveness on protecting two yeast cytosolic enzymes against thermal inactivation. However, enzyme protection has always been associated to a decrease in catalytic activity at the stabilizing conditions i.e., the presence of the protective molecule. In the present study we tested trehalose and glycerol on thermal protection of the mammalian cytosolic enzyme phosphofructokinase. Here we found that trehalose was able to protect phosphofructokinase against thermal inactivation as well as to promote an activation of its catalytic activity. The enzyme incubated in the presence of 1 M trehalose did not present any significant inactivation within 2 h of incubation at 50 degrees C, contrasting to control experiments where the enzyme was fully inactivated during the same period exhibiting a t0.5 for thermal inactivation of 56+/-5 min. On the other hand, enzyme incubated in the presence of 37.5% (v/v) glycerol was not protected against incubation at 50 degrees C. Indeed, when phosphofructokinase was incubated for 45 min at 50 degrees C in the presence of lower concentrations of glycerol (7.5-25%, v/v), the remaining activity was 2-4 times lower than control. These data show that the compatibility of effects previously shown for trehalose and glycerol with some yeast cytosolic enzymes can not be extended to all globular enzyme system. In the case of phosphofructokinase, we believe that its property of shifting between several different complex oligomers configurations can be influenced by the physicochemical properties of the stabilizing molecules.  相似文献   

7.
We have previously reported that carbohydrates and polyols protect different enzymes against thermal inactivation and deleterious effects promoted by guanidinium chloride and urea. Here, we show that these osmolytes (carbohydrates, polyols and methylamines) protect mitochondrial F(0)F(1)-ATPase against pressure inactivation. Pressure stability of mitochondrial F(0)F(1)-ATPase complex by osmolytes was studied using preparations of membrane-bound submitochondrial particles depleted or containing inhibitor protein (IP). Hydrostatic pressure in the range from 0.5 to 2.0 kbar causes inactivation of submitochondrial particles depleted of IP (AS particles). However, the osmolytes prevent pressure inactivation of the complex in a dose-dependent manner, remaining up to 80% of hydrolytic activity at the highest osmolyte concentration. Submitochondrial particles containing IP (MgATP-SMP) exhibit low ATPase activity and dissociation of IP increases the hydrolytic activity of the enzyme. MgATP-SMP subjected to pressure (2.2 kbar, for 1 h) and then preincubated at 42 degrees C to undergo activation did not have an increase in activity. However, particles pressurized in the presence of 1.5 M of sucrose or 3.0 M of glucose were protected and after preincubation at 42 degrees C, showed an activation very similarly to those kept at 1 bar. In accordance with the preferential hydration theory, we believe that osmolytes reduce to a minimum the surface of the macromolecule to be hydrated and oppose pressure-induced alterations of the native fold that are driven by hydration forces.  相似文献   

8.
Membrane bound cardiac adenylyl cyclase was shown to undergo a spontaneous and irreversible thermal inactivation with a t1/2 of approximately 10 min. The loss of activity could not be explained by the action of endogenous proteases. Repeated freeze-thaw of membrane preparations resulted in a much increased rate of thermal inactivation (t1/2 = approx. 2 min). ATP, adenylimidodiphosphate, ADP, and PPi protected the enzyme from thermal inactivation with dissociation constants (Kd) of 193, 5.04, 84.4, and 6.3 microM, respectively. 5'-AMP and cyclic AMP were ineffective as protectors at concentrations as high as 3 mM. Activators of adenylyl cyclase such as Mn2+, forskolin, 5-guanylylimidodiphosphate, and NaF and 9 mM Mg2+ protected against thermal inactivation with Kd of 16.8 microM, 8.81 microM, 0.23 microM and 1.04 mM, respectively. Mg2+ alone was without effect. Thermal inactivation was first order under all conditions tested. Arrhenius plots of the rate constants for inactivation vs temperature were linear. The increased stability of ligand bound adenylyl cyclase was shown to be associated with an increased free energy of activation (delta G 0). These data provide evidence for the existence of two distinct conformations of cardiac adenylyl cyclase based on different susceptibilities to thermal inactivation. These enzyme conformations, termed E1 and E2, may be important reaction intermediates. The thermal stability of E1 was highly influenced by the enzyme's membrane lipid environment. The formation of E2 from E1 was enhanced by interaction with substrate, PPi, activators of adenylyl cyclase, and by interaction with dissociated stimulatory guanine nucleotide binding protein-alpha beta gamma heterotrimers.  相似文献   

9.
The hemagglutinin (HA) surface glycoprotein is triggered by endosomal low pH to cause membrane fusion during influenza A virus (IAV) entry yet must remain sufficiently stable to avoid premature activation during virion transit between cells and hosts. HA activation pH and/or virion inactivation pH values less than pH 5.6 are thought to be required for IAV airborne transmissibility and human pandemic potential. To enable higher-throughput screening of emerging IAV strains for “humanized” stability, we developed a luciferase reporter assay that measures the threshold pH at which IAVs are inactivated. The reporter assay yielded results similar to TCID50 assay yet required one-fourth the time and one-tenth the virus. For four A/TN/09 (H1N1) HA mutants and 73 IAVs of varying subtype, virion inactivation pH was compared to HA activation pH and the rate of inactivation during 55°C heating. HA stability values correlated highly with virion acid and thermal stability values for isogenic viruses containing HA point mutations. HA stability also correlated with virion acid stability for human isolates but did not correlate with thermal stability at 55°C, raising doubt in the use of supraphysiological heating assays. Some animal isolates had virion inactivation pH values lower than HA activation pH, suggesting factors beyond HA stability can modulate virion stability. The coupling of HA activation pH and virion inactivation pH, and at a value below 5.6, was associated with human adaptation. This suggests that both virologic properties should be considered in risk assessment algorithms for pandemic potential.  相似文献   

10.
The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.  相似文献   

11.
A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory‐scale pulsed electric field (PEF) treatment chamber with co‐field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80°C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol?1. The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5–12% enzyme inactivation may be related to other electro‐chemical effects occurring during PEF treatments. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

12.
The thermal and the combined high pressure–thermal inactivation kinetics of almond β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2?±?8.6 kJ/mol decreasing to 55.2?±?3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature–pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be ?29.6?±?0.6, ?29.8?±?1.7, ?20.6?±?3.2, ?41.2?±?4.8, ?36.5?±?1.8, ?39.6?±?4.3, ?31.0?±?4.5 and ?33.8?±?3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure–temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.  相似文献   

13.
The maize cysteine protease complex, which required SDS for its activation in vitro, is a 179 kDa trimeric complex (P-I)3 of a cysteine protease (P) [EC 3.4.22] and a cysteine protease inhibitor (I), cystatin [Yamada et al. (1998) Plant Cell Physiol. 39: 106, Yamada et al. (2000) Plant Cell Physiol. 41: 185]. Here, we show the mechanism of the SDS-dependent activation of the trimeric (P-I) complex and stabilization of the activated protease by its specific substrates. The cystatin-free cysteine protease isolated by preparative SDS-PAGE was still specifically activated by SDS, and its profile of SDS-dependency was exactly the same as that of the trimeric (P-I) complex. It is, therefore, evident that an SDS-dependent conformational change of the protease itself, rather than the release of cystatin from the complex, is crucial for the activation. Pre-treatment analysis with SDS revealed that SDS was required for the initiation of the activation of the trimeric (P-I) complex. Furthermore, we found that once the protease was activated, if there was no substrate, it was rapidly inactivated under optimum conditions of proteolysis, and showed that such inactivation was not due to autolysis of the protease. In contrast, addition of specific substrates prevented the inactivation, and thus we presumed that the activity of the cysteine protease is regulated by both activation by conformational change and rapid inactivation after consumption of substrates.  相似文献   

14.
The kinetics of thermal inactivation of Penaeus penicillatus acid phosphatase have been studied using a kinetic method related to the substrate reaction during irreversible inhibition of the enzyme activity as previously described by Tsou (Adv. Enzymol. Relat. Areas Mol. Biol. (1988) 61, 381-436). The kinetics of thermal inactivation of the enzyme show that the reaction is irreversible. The microscopic rate constants were determined for thermal inactivation of free enzyme and the enzyme--substrate complex. The results show that the presence of substrate has a significant protective effect against thermal inactivation of the enzyme.  相似文献   

15.
The thermal stability of glucose oxidase was studied at temperatures between 50 and 70 degrees C by kinetic and spectroscopic (circular dichroism) methods. The stability of glucose oxidase was shown to depend on the medium pH, protein concentration, and the presence of protectors in the solution. At low protein concentrations (< 15 micrograms/ml) and pH > 5.5, the rate constants kin (s-1) for thermal inactivation of glucose oxidase were high. Circular dichroic spectra suggested an essential role of beta structures in stabilizing the protein globule. At a concentration of 15 micrograms protein/ml, the activation energy Ea of thermal inactivation of glucose oxidase in aqueous solution was estimated at 79.1 kcal/mol. Other thermodynamic activation parameters estimated at 60 degrees C had the following values: delta H = 78.4 kcal/mol, delta G = 25.5 kcal/mol, and delta S = 161.9 entropy units. The thermal inactivation of glucose oxidase was inhibited by KCl, polyethylene glycols, and polyols. Among polyols, the best was sorbitol, which stabilized glucose oxidase without affecting its activity. Ethanol, phenol, and citrate exerted destabilizing effects.  相似文献   

16.
Thermal inactivation and reactivation of pantothenate hydrolase were studied in whole cells of Pseudomonas fluorescens. The enzyme is susceptible to thermal inactivation in whole cells at 37-40 degrees C, and is reactivated when the temperature is lowered again. Chloramphenicol does not prevent reactivation. The activation energy of enzyme inactivation in vivo is about 540kJ/mol. This activation energy is 220kJ/mol in vitro, but it is increased to 550-630kJ/mol by several metabolites, such as succinate, glyoxylate and oxalate. Generally, good carbon sources, causing rapid growth, protect the enzyme from thermal inactivation in vivo, and enable reactivation to occur at a fast rate. The enzyme is also inactivated below 35 degrees C, showing an activation energy of about 35kJ/mol. Good carbon sources prevent this inactivation as well, and cause slight reactivation. Glycine, although not utilized for growth, protects the enzyme well from this inactivation but not from inactivation at 37-40 degrees C, and prevents reactivation totally. From the activation energies of inactivation and the effects of the various carbon sources, it appears possible that changes in the concentrations of intracellular metabolites may be responsible for the changes in inactivation and reactivation.  相似文献   

17.
Thermal inactivation and unfolding of the dimeric arginine kinase (AK) from sea cucumber Stichopus japonicus was investigated. The activation energy was calculated to be 388 kJ/mol. Based on the analysis of the denaturation course at 58 degrees C, a model is suggested for the thermal unfolding of this dimeric AK. In addition, the effect of free Mg(2+) and the potential biological significance on the thermal unfolding of dimeric AK is discussed.  相似文献   

18.
19.
Kinetic analyses of infectivity loss during thermal inactivation of reovirus particles revealed substantial differences between virions and infectious subvirion particles (ISVPs), as well as between the ISVPs of reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The difference in thermal inactivation of T1L and T3D ISVPs was attributed to the major surface protein mu1 by genetic analyses with reassortant viruses and recoated cores. Irreversible conformational changes in ISVP-bound mu1 were shown to accompany thermal inactivation. The thermal inactivation of ISVPs approximated first-order kinetics over a range of temperatures, permitting the use of Arrhenius plots to estimate activation enthalpies and entropies that account for the different behaviors of T1L and T3D. An effect similar to enthalpy-entropy compensation was additionally noted for the ISVPs of these two isolates. Kinetic analyses with other ISVP-like particles, including ISVPs of a previously reported thermostable mutant, provided further insights into the role of mu1 as a determinant of thermostability. Intact virions, which contain final sigma3 bound to mu1 as their major surface proteins, exhibited greater thermostability than ISVPs and underwent thermal inactivation with kinetics that deviated from first order, suggesting a role for final sigma3 in both these properties. The distinct inactivation behaviors of ISVPs are consistent with their role as an essential intermediate in reovirus entry.  相似文献   

20.
Rate of inactivation curves for the "free" toxin, prototoxin, or activated toxin in crude filtrates of Clostridium botulinum type E were nonlinear, consisting of a fast inactivating rate followed by a slow inactivating rate. Thermodynamic parameters were calculated over a temperature range of 125 to 145 F (51.7 to 62.8 C) for the two different inactivation rates. Energy of activation was low at the lower temperature and high at the higher temperature. The thermal requirement for inactivating similar concentrations of the "free" toxin, prototoxin, or activated toxin was considered to be the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号