首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The culture filtrate of Bacillus intermedius 3-19 was used for isolation by chromatography on CM-cellulose and Mono S columns of a proteinase that is secreted during the late stages of growth. The enzyme is irreversibly inhibited by the inhibitor of serine proteinases diisopropyl fluorophosphate, has two pH optima (7.2 and 9.5) for casein hydrolysis and one at pH 8.5 for Z-Glu-pNA hydrolysis. The molecular weight of the enzyme is 26.5 kD. The K(m) for Z-Glu-pNA hydrolysis is 0.5 mM. The temperature and pH dependences of the stability of the proteinase were studied. The enzyme was identified as glutamyl endopeptidase 2. The N-terminal sequence (10 residues) and amino acid composition of the enzyme were determined. The enzyme hydrolyzes Glu4-Gln5, Glu17-Asp18, and Cys11-Ser12 bonds in the oxidized A-chain of insulin and Glu13-Ala14, Glu21-Arg22, Cys7-Gly8, and Cys19-Gly20 bonds in the oxidized B-chain of insulin.  相似文献   

2.
A proteinase secreted in the late stationary phase was isolated from the culture fluid of Bacillus intermedius 3-19 by ion-exchange chromatography on CM-cellulose followed by FPLC on a Mono S column. The enzyme was completely inhibited by the serine proteinase inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. The maximum proteolytic activity against the synthetic chromogenic substrate Z-Ala-Ala-Leu-pNA was observed at pH 9.0. The molecular weight of the enzyme is 28 kD and its isoelectric point is 9.2. We have also determined pH- and thermostability and Km and kcat of this proteinase. The enzyme has been classified as a thiol-dependent serine proteinase. N-Terminal amino acid sequence (10 residues) and amino acid composition of the protein were also determined. By the mode of hydrolysis of peptide bonds in the oxidized B-chain of insulin, this enzyme is similar to the thiol-dependent serine proteinase 1 from B. intermedius 3-19 secreted during vegetative growth.  相似文献   

3.
The effect of certain nutrients on the growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. Glucose was found to inhibit the synthesis of proteinase in the early (28 h of growth) but not in the late stationary phase (48 h of growth). The inhibitory effect of the other mono- and disaccharides studied was less pronounced. Casamino acids added to the medium at concentrations of 0.1-1% as an additional carbon and nitrogen source stimulated enzyme biosynthesis. Individual amino acids (cysteine, asparagine, glutamine, tryptophan, histidine, and glutamate) also stimulated enzyme biosynthesis in the early stationary phase by 25-30%, whereas other amino acids (valine, leucine, alanine, and aspartate) were ineffective or even slightly inhibitory to enzyme production. The stimulatory effect of the first group of amino acids on the synthesis of proteinase in the late stationary phase was negligible. In contrast, the bivalent ions Ca2+, Mg2+, and Mn2+ stimulated biosynthesis of proteinase in the late stationary phase (by 20-60%) and not in the early stationary phase. The data indicate that there are differences in the biosyntheses of proteinase by the recombinant B. subtilis strain during the early and late periods of the stationary phases.  相似文献   

4.
The effect of certain nutrients on the growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. Glucose was found to inhibit the synthesis of proteinase in the early (28 h of growth) but not in the late stationary phase (48 h of growth). The inhibitory effect of the other mono-and disaccharides studied was less pronounced. Casamino acids added to the medium at concentrations of 0.1–1% as an additional carbon and nitrogen source stimulated enzyme biosynthesis. Individual amino acids (cysteine, asparagine, glutamine, tryptophan, histidine, and glutamate) also stimulated enzyme biosynthesis in the early stationary phase by 25–30%, whereas other amino acids (valine, leucine, alanine, and aspartate) were ineffective or even slightly inhibitory to enzyme production. The stimulatory effect of the first group of amino acids on the synthesis of proteinase in the late stationary phase was negligible. In contrast, the bivalent ions Ca2+, Mg2+, and Mn2+ stimulated biosynthesis of proteinase in the late stationary phase (by 20–60%) and not in the early stationary phase. The data indicate that there are differences in the biosyntheses of proteinase by the recombinant B. subtilis strain during the early and late periods of the stationary phases.  相似文献   

5.
The effect of some components of cultivation medium on the growth of the streptomycin-resistant Bacillus intermedius strain 3-19 and on the production of glutamyl endopeptidase was investigated using factorial experimental design, which allowed the concentrations of peptone and inorganic phosphate to be optimized for the maximum production of the enzyme. Experiments with different peptones and casamino acids showed that the enzyme production is maximum with peptone 3 of plant origin. The addition of casamino acids or amino acids to the peptone-containing cultivation medium inhibited the production of glutamyl endopeptidase.  相似文献   

6.
The effect of some components of cultivation medium on the growth of the streptomycin-resistant Bacillus intermedius strain 3-19 and on the production of glutamyl endopeptidase was investigated using factorial experimental design, which allowed the concentrations of peptone and inorganic phosphate to be optimized for the maximum production of the enzyme. Experiments with different peptones and casamino acids showed that the enzyme production is maximum with peptone 3 of plant origin. The addition of casamino acids or amino acids to the peptone-containing cultivation medium inhibited the production of glutamyl endopeptidase.  相似文献   

7.
8.
The effect of nutrients and growth conditions on the accumulation of glutamyl endopeptidase in the culture liquid of Bacillus intermedius 3-19 was studied. Glucose and other readily metabolizable carbon sources were found to suppress the production of the enzyme, while inorganic phosphate and ammonium cations enhanced it. Protein substrates, such as casein, gelatin, and hemoglobin, did not affect enzyme production. Some bivalent cations (Ca2+, Mg2+, Co2+) increased the production of glutamyl endopeptidase, but others (Zn2+, Fe2+, Cu2+) acted in the opposite way. The rate of enzyme accumulation in the culture liquid increased as the growth rate of the bacterium decreased, so that the maximum enzyme activity was observed in the stationary growth phase. Based on the results of this investigation, an optimal medium for the maximum production of glutamyl endopeptidase by B. intermedius 3-19 was elaborated.  相似文献   

9.
We studied the biosynthesis of Bacillus intermedius glutamyl endopeptidase in the recombinant Bacillus subtilis strain AJ73 delta58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase, and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different.  相似文献   

10.
The biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius 3–19 by the recombinant strain Bacillus subtilis AJ73(pCS9) was found to be enhanced under salt stress conditions (growth in a medium containing 1 MNaCl and 0.25 M sodium citrate). In a recombinant strain of B. subtilis deficient in the regulatory proteins DegS and DegU, which control the synthesis of degradative enzymes, the expression of the proteinase gene was inhibited. In contrast, in the strain B. subtilis degU32(Hy), which provides for the overproduction of proteins positively regulated by the DegS-DegU system, the biosynthesis of the subtilisin-like proteinase of B. intermedius 3–19 increased by 6–10 fold. These data suggest that the DegS-DegU system is involved in the positive regulation of the expression of the subtilisin-like B. intermedius proteinase gene in recombinant B. subtilis strains.  相似文献   

11.
The biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius 3-19 by the recombinant strain Bacillus subtilis AJ73(pCS9) was found to be enhanced under salt stress conditions (growth in a medium containing 1 M NaCl and 0.25 M sodium citrate). In a recombinant strain of B. subtilis deficient in the regulatory proteins DegS and DegU, which control the synthesis of degradative enzymes, the expression of the proteinase gene was inhibited. In contrast, in the strain B. subtilis degU32 (Hy), which provides for the over-synthesis of proteins positively regulated by the DegS-DegU system, the biosynthesis of the subtilisin-like proteinase of B. intermedius 3-19 increased by 6-10 times. These data suggest that the DegS-DegU system is involved in the positive regulation of the expression of the subtilisin-like B. intermedius proteinase gene in recombinant B. subtilis strains.  相似文献   

12.
A poly(A)+RNA fraction was isolated from the overall RNA of Bacillus intermedius using chromatography on poly(U) Sepharose and was shown to be electrophoretically heterogeneous. The presence of a polyadenylate segment was confirmed by hybridization with polyuridine. The biological activity of the poly(A)+RNA was proved by the translation in Xenopus laevis oocytes. The dynamics of poly(A)+RNA synthesis was studied in the course of B. intermedius growth and the content of poly(A)+RNA was assayed in the cells grown in different media.  相似文献   

13.
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosynthesis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5-1%, gelatin at concentrations of 0.5-1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V-VII stages of sporulation).  相似文献   

14.
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosyntheis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5–1%, gelatin at concentrations of 0.5–1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V–VII stages of sporulation).  相似文献   

15.
The growth of the recombinant Bacillus subtilis strain AJ73 carrying the Bacillus intermedius 3-19 glutamyl endopeptidase gene on a multicopy plasmid and the effect of some nutrients on the efficiency of extracellular glutamyl endopeptidase production in the stationary growth phase were studied. In this phase, the concentration of glutamyl endopeptidase in the culture liquid peaked at the 48th and 78th hours of cultivation and depended on the composition of the cultivation medium. Unlike the synthesis of glutamyl endopeptidase in the trophophase (i.e., during vegetative growth), which was suppressed by glucose, the synthesis of this enzyme during sporulation was resistant to glucose present in the cultivation medium. A multifactorial experimental design allowed optimal proportions between the concentrations of major nutrients (peptone and inorganic phosphate) to be determined. Inorganic phosphate and ammonium ions augmented the production of glutamyl endopeptidase by 30–150%, and complex organic substrates, such as casein and gelatin, enhanced the production of glutamyl endopeptidase by 50–100%. During sporulation, the production of glutamyl endopeptidase was stimulated by some bivalent cations (Ca2+, Mg2+, and Co2+) and inhibited by others (Zn2+, Fe2+, and Cu2+). The inference is drawn that the regulatory mechanisms of glutamyl endopeptidase synthesis during vegetative growth and sporulation are different.  相似文献   

16.
The growth of the recombinant Bacillus subtilis strain AJ73 carrying the Bacillus intermedius 3-19 glutamyl endopeptidase gene on a multicopy plasmid and the effect of some nutrients on the efficiency of extracellular glutamyl endopeptidase production in the stationary growth phase were studied. In this phase, the concentration of glutamyl endopeptidase in the culture liquid peaked at the 48th and 78th h of cultivation and depended on the composition of the cultivation medium. Unlike the synthesis of glutamyl endopeptidase in the trophophase (i.e., during vegetative growth), which was suppressed by glucose, the synthesis of this enzyme during sporulation was resistant to glucose present in the cultivation medium. A multifactorial experimental design allowed optimal proportions between the concentrations of major nutrients (peptone and inorganic phosphate) to be determined. Inorganic phosphate and ammonium ions augmented the production of glutamyl endopeptidase by 30-150%, and complex organic substrates, such as casein and gelatin, enhanced the production of glutamyl endopeptidase by 50-100%. During sporulation, the production of glutamyl endopeptidase was stimulated by some bivalent cations (Ca2+, Mg2+, and Co2+) and inhibited by others (Zn2+, Fe2+, and Cu2+). The inference is drawn that the regulatory mechanisms of glutamyl endopeptidase synthesis during vegetative growth and sporulation are different.  相似文献   

17.
The mprBi gene from Bacillus intermedius 3-19 encoding a novel secreted metalloproteinase was identified. The mpriBi gene was expressed in an extracellular proteinase-deficient Bacillus subtilis BG 2036 strain and the corresponding protein was characterized biochemically. The 19 kDa MprBi protein was purified to homogeneity and sequenced by mass spectroscopy and Edman degradation methods. Amino acid sequence analysis of MprBi identified an active site motif HEYGHNFGLPHD and a conserved structural component Met-turn, both of which are unique features of the metzincin clan. Furthermore, MprBi harbors a number of distinct sequence elements characteristic of proteinase domains in eukaryotic adamalysins. We conclude that MprBi and similar proteins from other Bacillus species form a novel group of metzincin metalloproteinases in prokaryotes.  相似文献   

18.
Plasmids with whole genes for ribonucleases from B. intermedius (binase) and B. pumilis (RNase Bp) assembled with the whole gene of barstar, a specific intracellular inhibitor, are constructed. The resultant plasmids pMZ55 and pMZ56 effectively express binase and RNase Bp genes in B. subtilis cells. A medium for maximum expression of RNase genes by recombinant strains is developed. The expression of binase and RNase Bp genes in B. subtilis cells is negatively regulated by exogenic inorganic phosphate.  相似文献   

19.
20.
The recombinant strain of Bacillus subtilis bearing B. intermedius glutamyl endopeptidase gene in multicopy plasmid delta58.21 secretes the enzyme to the medium at the phase of slowing of growth and the stationary growth phase with accumulation maxima at 24 and 48 h. Enzyme samples were isolated from the culture liquid after 24 and 48 h of culturing of and were purified up to homogeneity by ion exchange chromatography on carboxymethyl cellulose and HPLC on a MonoS column. The molecular weight of the corresponding proteins was 29 kDa. Both preparations had identical structure, but differed in affinity to the specific substrate Z-Glu-pNA. The effects of Ca+ ions and specific low-molecular and protein inhibitors on the activity of the enzyme corresponding to various growth phases has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号