首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of mating and dispersal are key factors affecting the dynamics, viability and evolution of plant populations. Changes in mating system parameters can provide evidence of anthropogenic impacts on populations of rare plants. Tetratheca paynterae subsp. paynterae is a critically endangered perennial shrub confined to a single ironstone range in Western Australia. Mining of the range removed 25% of plants in 2004 and further plants may be removed if the viability of the remaining populations is not compromised. To provide baseline genetic data for monitoring mining impacts, we characterised the mating system and pollen dispersal over two seasons in T. paynterae subsp. paynterae and compared mating system parameters with two other ironstone endemics, T. paynterae subsp. cremnobata and T. aphylla subsp. aphylla that were not impacted by mining. T. paynterae subsp. paynterae was the only taxon showing evidence of inbreeding (t m = 0.89), although hand pollination revealed pre-zygotic self-incompatibility limits the production of seed from self-pollen. In a year of lower fruit set (2005), the estimate of correlated paternity increased from 20 to 35%. Direct estimates of realised pollen dispersal, made by paternity assignment in two small populations where all adult plants were genotyped, revealed a leptokurtic distribution with 30% of pollen dispersed less than 3 m and 90% less than 15 m. Restricted pollen dispersal maintains the strong genetic structuring of the adult populations in succeeding generations. As a consequence of preferential outcrossing, any reduction in effective population size, flowering plant density and/or the abundance and activity of pollinators may impact negatively on population viability through reduced seed set, increased inbreeding and increased correlated paternity.  相似文献   

2.
Nineteen microsatellite markers were developed from Tetratheca paynterae ssp. paynterae, a rare and endangered, leafless, perennial shrub. Twelve loci were polymorphic in T. paynterae ssp. paynterae with two to 14 alleles per locus and mean expected heterozygosity of 0.62. Primer pairs were tested on four other Tetratheca species from ironstone ranges in southern Western Australia. Ten loci were polymorphic in T. paynterae ssp. cremnobata and T. aphylla ssp. aphylla, three in T. harperi and four in T. erubescens. The level of polymorphism was adequate for studies of genetic structure and mating systems in three of the five taxa.  相似文献   

3.
Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population differentiation. These events may follow abundance declines due to natural or anthropogenic perturbations, where translocations may be an effective conservation strategy to increase population size. American black bears (Ursus americanus) were nearly extirpated from the Central Interior Highlands, USA by 1920. In an effort to restore bears, 254 individuals were translocated from Minnesota, USA, and Manitoba, Canada, into the Ouachita and Ozark Mountains from 1958 to 1968. Using 15 microsatellites and mitochondrial haplotypes, we observed contemporary genetic diversity and differentiation between the source and supplemented populations. We inferred four genetic clusters: Source, Ouachitas, Ozarks, and a cluster in Missouri where no individuals were translocated. Coalescent models using approximate Bayesian computation identified an admixture model as having the highest posterior probability (0.942) over models where the translocation was unsuccessful or acted as a founder event. Nuclear genetic diversity was highest in the source (AR = 9.11) and significantly lower in the translocated populations (AR = 7.07–7.34; P = 0.004). The Missouri cluster had the lowest genetic diversity (AR = 5.48) and served as a natural experiment showing the utility of translocations to increase genetic diversity following demographic bottlenecks. Differentiation was greater between the two admixed populations than either compared to the source, suggesting that genetic drift acted strongly over the eight generations since the translocation. The Ouachitas and Missouri were previously hypothesized to be remnant lineages. We observed a pretranslocation remnant signature in Missouri but not in the Ouachitas.  相似文献   

4.
He J  Chen L  Si Y  Huang B  Ban X  Wang Y 《Genetica》2009,135(2):233-243
Magnolia officinalis subsp. biloba, a traditional Chinese medicinal plant, experienced severe declines in the number of populations and the number of individuals in the late 20th century due to the widespread harvest of the subspecies. A large-scale cultivation program was initiated and cultivated populations rapidly recovered the loss in individual plant numbers, but wild populations remained small as a consequence of cutting. In this study, the levels of genetic variation and genetic structure of seven wild populations and five domestic populations of M. officinalis subsp. biloba were estimated employing an AFLP methodology. The plant exhibited a relatively high level of intra-population genetic diversity (h = 0.208 and H j = 0.268). The cultivated populations maintained approximately 95% of the variation exhibited in wild populations, indicating a slight genetic bottleneck in the cultivated populations. The analysis of genetic differentiation revealed that most of the AFLP diversity resided within populations both for the wild group (78.22%) and the cultivated group (85.92%). Genetic differentiation among populations in the wild group was significant (F ST = 0.1092, P < 0.005), suggesting wild population level genetic structure. Principal coordinates analysis (PCO) did not discern among wild and cultivated populations, indicating that alleles from the wild population were maintained in the cultivated gene pool. Results from the present study provide important baseline data for effectively conserving the genetic resources of this medicinal subspecies.  相似文献   

5.
Sal (Shorea robusta Gaertn., Dipterocarpaceae) is a wind-pollinated tropical tree species found in southern Asia. We investigated the genetic diversity and structure at four microsatellites of 15 populations comprising continuous-peripheral and disjunct-peripheral populations in Nepal. Estimates of genetic diversity (N A = 8.98, H O = 0.62, H E = 0.69) were similar when compared with those of other tropical tree species. A higher level of genetic diversity was observed in continuous-peripheral populations (N A = 9.61, H O = 0.67, H E = 0.72) as compared to disjunct-peripheral (N A = 8.04, H O = 0.55, H E = 0.64). Population differentiation was higher among disjunct-peripheral populations (F ST = 0.043) than among continuous peripherals (F ST = 0.012). There was a significant association between gene flow distances and genetic differentiation (r 2 = 0.128, P ≤ 0.007). No spatial arrangement of populations according to their geographical locations was found. Based on observed genetic diversity protection of some populations in continuous-peripheral range are suggested for the sustainable conservation of genetic resources of the species while protection of some disjunct-peripheral populations are also recommended for conserving rare alleles.  相似文献   

6.
Delphinium staphisagria is an endemic annual or biennial herb from the Mediterranean Basin, widely distributed in isolated populations of variable size. We evaluated the allozyme diversity of 31 populations along its distribution range via starch gel electrophoresis, assaying 12 enzyme systems and scoring 17 loci. The low levels of genetic variability detected (A = 11.8, A p = 1.6, H o = 0.026, H e = 0.057), are discussed in relation to the life-history traits of the species, such as short life-span, selfing or gravity seed dispersion. Other factors influencing genetic diversity, such as evolutionary history and spreading are also considered. Due to its historical medicinal uses, this plant has probably become widespread in the Mediterranean area. Human-mediated distribution could have promoted few migrant genotypes, recent founder events and long distance dispersal. These events would explain the genetic homogeneity found within and among populations, as well as the absence of a clear biogeographic structure. The limited genetic variability, the high genetic similarity among populations and the dysploidy of this species make it worthy of conservation. Management strategies are proposed mainly to preserve its genetic pool.  相似文献   

7.
Understanding the amount and distribution of genetic diversity in natural populations can inform the conservation strategy for the species in question. In this study, genetic variation at eight nuclear microsatellite loci was used to investigate genetic diversity and population structure of wild litchi (Litchi chinensis Sonn. subsp. chinensis). Totally 215 individuals were sampled, representing nine populations of wild litchi. All eight loci were polymorphic, with a total of 51 alleles. The expected heterozygosity in the nine populations ranged from 0.367 to 0.638 with an average value of 0.526. Inbreeding within wild litchi populations was indicated by a strong heterozygote defect. Significant bottleneck events were detected in the populations from Yunnan and Vietnam, which could be responsible for lower levels of genetic diversity in these populations. Measures of genetic differentiation (F ST = 0.269) indicated strong differentiation among wild litchi populations. Significant correlation was found between genetic differentiation and geographical distance (r = 0.655, P = 0.002), indicating a strong isolation by distance in these populations. Bayesian clustering suggested genetic separation among three regional groups, namely, the western group, the central group and the eastern group. Some conservation strategies for wild litchi populations were also proposed based on our results.  相似文献   

8.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

9.
The recovery of genetic variation in newly recolonized populations is an important concern in forest conservation genetics. We examined the potential recovery of genetic diversity and changes to genetic structure in populations of the wind‐pollinated species Tsuga canadensis that naturally regenerated following the extensive 19th century regional forest clearance for agriculture in west‐central Massachusetts. We genotyped 264 individuals across six microsatellite loci and compared levels and patterns of genetic variation between primary forests (forests that were logged but never cleared) and secondary forests (stands that were recolonized following agricultural abandonment). We found no significant reductions in genetic diversity in secondary forests (AR = 5.450; HS = 0.718) compared to primary forests (AR = 5.742; HS = 0.730). Moreover, the population genetic differentiation was also not significantly reduced in secondary compared to primary forests, with no significant genetic structure observed among all populations. These results suggest rapid genetic recovery of T. canadensis populations in recolonized forests compared with other late‐successional temperate tree species.  相似文献   

10.
The management of remnant populations in highly fragmented landscapes requires a thorough understanding of the processes shaping population persistence. We investigated relationships between population characteristics (i.e. size, density and pollinator abundance), offspring performance, genetic diversity and differentiation in Trollius europaeus, a plant with a nursery pollination system. In 19 populations of different sizes and located in north-east Switzerland, an area which has undergone widespread land use changes over the last decades, we assessed neutral genetic diversity (N total = 383) using AFLPs and plant performance in a greenhouse experiment (N total = 584) using competition and control treatments. Overall genetic differentiation was low (F ST = 0.033) with a marginal significant isolation by distance effect (P = 0.06) indicating (historical) genetic connectivity among the populations. Mean expected heterozygosity was H E of 0.309 (0.0257–0.393) while inbreeding coefficients (F IS) were significant in only three populations. Genetic diversity was not related to population size, plant density or pollinator abundance. Plant performance was reduced under competition (P < 0.001) but the severity of competition was independent of genetic diversity and population size. In summary, remnant populations of T. europaeus retain genetic diversity and seem capable of persisting under the present conditions within an agricultural matrix. T. europaeus is a perennial herb, thus it may require several generations for the negative effects of fragmentation and isolation to manifest. Our findings indicate that small populations are as important as large populations for the conservation and management of genetic resources.  相似文献   

11.
Island populations and populations established by reintroductions are prone to extinction, in part because they are vulnerable to deterministic and stochastic phenomena associated with geographic isolation and small population size. As population size declines, reduced genetic diversity can result in decreased fitness and reduced adaptive potential, which may hinder short- or long-term population viability. We used 32 microsatellite markers to investigate the conservation genetics of a newly established population of Evermann’s Rock Ptarmigan (Lagopus muta evermanni) at Agattu Island, in the western Aleutian Archipelago, Alaska. We found low genetic diversity (observed heterozygosity = 0.41, allelic richness = 2.2) and a small effective population size (N e  = 28.6), but a relatively large N e /N ratio = 0.55, which was attributed to multiple paternity in 80% of the broods and low reproductive skew among males (λ = 0.29). Moreover, successful breeding pairs were less related to each other than random male–female pairs. For conservation efforts based on reintroductions, a mating system with high rates of multiple paternity may facilitate retention of genetic diversity, thereby reducing the potential for inbreeding in small or isolated populations. Our results underscore the importance of quantifying genetic diversity and understanding the breeding behavior of translocated populations.  相似文献   

12.
Understanding the factors that contribute to population genetic divergence across a species' range is a long‐standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present‐day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic‐Mediterranean refugia after the last glacial period, with leading‐edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long‐distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life‐history and major geographic features interact to shape the distribution of genetic diversity.  相似文献   

13.
The genetic variation within and among eight Tunisian natural populations of Lavandula multifida L., from different bioclimatic zones was assessed using random amplified polymorphic DNA (RAPDs). Of a total of 97 generated bands from seven selected primers, 84 bands were polymorphic. The genetic diversity within a population was high and varied according to the populations (0.308 < H’ < 0.459) without relationships to altitudes or pluviothermic indices of sites. The genetic differentiation among populations was high (GST = 0.395 and ΦST = 0.318). All population pairs were significantly differentiated. Among populations, within ecological groups genetic structure was high (0.219); whilst among them it was low (ΦCT = 0.049; P < 0.05). The correlation between ΦST and geographic distance matrices among pairs of populations was not significant, suggesting that genetic connectivity between populations has a stochastic component at all spatial scales. The neighbour‐joining cluster analysis showed that individuals from each population clustered together. UPGMA cluster analysis showed that population groupings are not strictly in accordance with bioclimates or geographic location. The genetic differentiation in L. multifida could have occurred at local scales because of genetic drift. Efforts should be made to protect all populations. The maintenance of substantial population size should be initiated via fencing and controlling collection to restore the regeneration of populations.  相似文献   

14.
Kincaid’s lupine (Lupinus oreganus), a threatened perennial legume of western Oregon grasslands, is composed of small, fragmented populations that have consistently low natural seed set, suggesting they may have accumulated high enough levels of genetic load to be candidates for genetic rescue. We used simple sequence repeat (SSR) loci, both nuclear DNA and chloroplast DNA, to screen populations throughout the species’ range for evidence of severe inbreeding and recent genetic bottlenecks due to habitat fragmentation. After genotyping about 40% of the known populations, only one of 24 populations had strong statistical evidence for a recent genetic bottleneck (H e > H eq). Both mean nSSR fixation coefficients and genetic diversity did not statistically differ between very small, small, medium, and large lupine population size classes. Within population chloroplast DNA haplotype number was high for an animal pollinated species, ≈4.2 haplotypes/population, and within population haplotype diversity was also relatively evenly distributed. Within population patterns of nSSR and cpSSR genetic diversity suggest that genetic diversity has not been lost over the last century of habitat fragmentation. With genet lifespan thought to exceed 100 years, overlap of several to many generations, and substantial reductions in seed set from inbreeding depression that shifts cohort composition towards those generated by outcrossing events, Kincaid’s lupine is likely maintain the currently high levels of within population genetic diversity. The case of Kincaid’s lupine provides an example of how the assumptions of severe inbreeding depression with small population size and habitat fragmentation can be inaccurate.  相似文献   

15.
Genetic diversity and structure in Fagus crenata were studied by analyzing 14 nuclear microsatellite loci in 23 populations distributed throughout the species’ range. Although population differentiation was very low (F ST = 0.027; R ST = 0.041), both neighbor-joining tree and Bayesian clustering analyses provided clear evidence of genetic divergence between populations along the Japan Sea (Japan Sea lineage) and Pacific (Pacific lineage) sides of Japan, indicating that physical barriers to migration and gene flow, notably the mountain ranges separating the populations along the Japan Sea and Pacific sides, have promoted genetic divergence between these populations. The two lineages of the nuclear genome are generally consistent with those of the chloroplast genome detected in a previous study, with several discrepancies between the two genomes. Within-population genetic diversity was generally very high (average H E = 0.839), but decreased in a clinal fashion from southwest to northeast, largely among populations of the Japan Sea lineage. This geographical gradient may have resulted from the late-glacial and postglacial recolonization to the northeast, which led to a loss of within-population genetic diversity due to cumulative founder effects.  相似文献   

16.
Measuring levels of population genetic diversity is an important step for assessing the conservation status of rare or endangered plant species and implementing appropriate conservation strategies. Populations of Ribes multiflorum subsp. sandalioticum and R. sardoum, two endangered endemic species from Sardinia, representing the whole genus on the island, were investigated using ISSR and SSR markers to determine levels and structure of genetic variability in their natural populations. Results indicated medium to low genetic diversity at the population level: Nei's gene diversity for ISSR markers ranged from 0.0840 to 0.1316; the expected heterozygosity (HE) for SSR ranged from 0.4281 to 0.7012. In addition, only one remnant population of R. sardoum showed a high level of inbreeding, in accordance with its very small size. Regarding the structure of the six R. sandalioticum populations, both principal coordinates analysis (PCoA) and STRUCTURE analysis of ISSR and SSR data highlighted low population structure, although two populations appeared to be clearly distinct from the others. The genetic pattern of the two taxa associated with their different ecological positions indicated resilience of R. sandalioticum populations in fresh and humid habitats and uncertain future resistance for the residual R. sardoum population in xeric calcareous stands. Hence, this study highlights the importance of an integrated conservation approach (genetic plus in situ and ex situ conservation studies/measures) for activating management programmes in these endemic and threatened taxa that can be considered as crop wild relatives of cultivated Ribes species.  相似文献   

17.
Assessing patterns of genetic variation in rare endangered species is critical for developing both in situ and ex situ conservation strategies. Pinus dabeshanensis Cheng et Law is an endangered species endemic to the Dabieshan Mountains of eastern China. To obtain fundamental information of genetic diversity, population history, effective population size, and gene flow in this species, we explored patterns of genetic variation of natural populations, in addition to an ex situ conserved population, using expressed sequence tag-simple sequence repeats (EST-SSR) markers. Our results revealed moderate levels of genetic diversity (e.g., HE = 0.458 vs. HE = 0.423) and a low level of genetic differentiation (FST = 0.028) among natural and conserved populations relative to other conifers. Both contemporary and historical migration rates among populations were high. Bayesian coalescent-based analyses suggested that 3 populations underwent reductions in population size ca. 10,000 yr ago, and that two populations may have experienced recent genetic bottlenecks under the TPM. Bayesian clustering revealed that individuals from the ex situ population were largely assigned to the ‘red’ cluster. Additionally, our results identified private alleles in the natural populations but not in the ex situ population, suggesting that the ex situ conserved population insufficiently represents the genetic diversity present in the species. Past decline in population size is likely to be due to Holocene climate change. Based on the genetic information obtained for P. dabeshanensis, we propose some suggestions for the conservation and efficient management of this endangered species.  相似文献   

18.
Pondberry, Lindera melissifolia, is an endangered and partially clonally reproducing shrub species found in isolated populations that inhabit seasonally wet depressions in forested areas of the lower Mississippi River alluvial valley and southeastern regions of the United States. With eleven microsatellite loci, we quantified population genetic differentiation and diversity among 450 genets in 10 locations distributed across pondberry’s range. We used estimates of F st and Jost’s D est to measure genetic differences between populations and between geographic regions. The largest pairwise regional difference was found between eastern and western regional population groups (F st = 0.23, D est = 0.67), with the northern-most population groups in each region exhibiting larger divergence from each other than the southern-most population groups. Genetic diversity was lowest in the Sand Pond Conservation Area (A e = 1.9, H e = 0.36), which was the northern-most pondberry population, and highest in the Francis Marion National Forest (A e = 4.1, H e = 0.69), although we identified only 17 genets in that admixed population. Following adjustments for estimated null allele frequencies, we identified heterozygote excess in four eastern populations and found no evidence for inbreeding in any population. The observed patterns of differentiation indicate a phylogeography that exhibits an Appalachian Mountain discontinuity coupled with northward migrations along the Southern Atlantic Coastal Plain and into the Mississippi Alluvial Plain. The genetic consequences of this proposed phylogeographical structure may affect selection of germplasm sources for population reestablishment programs across pondberry’s range.  相似文献   

19.
The southeastern United States and Florida support an unusually large number of endemic plant species, many of which are threatened by anthropogenic habitat disturbance. As conservation measures are undertaken and recovery plans designed, a factor that must be taken into consideration is the genetic composition of the species of concern. Here we describe the levels, and partitioning, of genetic diversity in 17 populations of the rare and threatened Florida endemic, Euphorbia telephioides (telephus spurge). Species-wide genetic diversity was high (Ps = 91%, APs = 3.81, As = 3.57 and Hes = 0.352) as was mean population genetic diversity (Pp = 81%, APp = 2.98, Ap = 2.59 and Hep = 0.320) which ranks it among the highest 10% of plant species surveyed. Partitioning of genetic variation (Gst = 0.106) was low compared to other herbaceous outcrossing perennials indicating high historical gene flow across its limited geographic range. Among population Gst values within the three Florida counties in which it occurs, Gulf (0.084), Franklin (0.059) and Bay Counties (0.033), were also quite low. Peripheral populations did not generally have reduced genetic variation although there was significant isolation by distance. Rarefaction analysis showed a non-significant relationship between allelic richness and actual population sizes. Our data suggest that E. telephioides populations were probably more continuously distributed in Bay, Gulf and Franklin Counties and that their relative contemporary isolation is a recent phenomenon. These results are important for developing a recovery plan for this species.  相似文献   

20.
A set of 107 hulless barley (Hordeum vulgare L. subsp. vulgare) landraces originally collected from the highlands of Nepal along the Annapurna and Manaslu Himalaya range were studied for genetic relatedness and population differentiation using simple sequence repeats (SSRs). The 44 genome covering barley SSRs applied in this study revealed a high level of genetic diversity among the landraces (diversity index, DI = 0.536) tested. The genetic similarity (GS) based UPGMA clustering and Bayesian Model-based (MB) structure analysis revealed a complex genetic structure of the landraces. Eight genetically distinct populations were identified, of which seven were further studied for diversity and differentiation. The genetic diversity estimated for all and each population separately revealed a hot spot of genetic diversity at Pisang (DI = 0.559). The populations are fairly differentiated (θ = 0.433, R ST = 0.445) accounting for > 40% of the genetic variation among the populations. The pairwise population differentiation test confirmed that many of the geographic populations significantly differ from each other but that the differentiation is independent of the geographic distance (r = 0.224, P > 0.05). The high level of genetic diversity and complex population structure detected in Himalayan hulless barley landraces and the relevance of the findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号