首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ratios of hapten and bovine serum albumin (BSA) in an antigen conjugate were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Hybridomas secreting monoclonal antibodies against 2,4-dichlorophenoxyacetic acid (2,4-D) were produced by fusing 2,4-D-BSA conjugate-immunized splenocytes with a HAT-sensitive mouse myeloma cell line, P3-X63-Ag8-653. A substantial cross-reaction was observed for 2,4-dichlorophenol (2,4-DP) when compared with that observed for 2,4-D. The full measurement range for this assay is 0.2–3 μg ml−1 for 2,4-DP. On the other hand, the range for 2,4-D is between 1 and 20 μg ml−1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A marine Bacillus circulans DMS-2 was able to grow and produce biosurfactant on glucose mineral salts medium (GMSM) with a reduction in the surface tension up to 27 mN m−1. The microorganism produced 1.64 ± 0.1 g l−1 of crude biosurfactant. The lipopeptide nature of the produced biosurfactant was confirmed by primulin and ninhydrin assays using High Performance Thin Layer Chromatography (HPTLC). Preparative thin layer chromatography (TLC) was performed to purify the lipopeptides from the crude biosurfactant. The critical micelle concentrations (CMC) of the crude and purified products were found to be 90 and 40 mg l−1 respectively. Fourier transform infrared spectrophotometer (FTIR) and matrix assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectral analysis revealed the identity of the produced lipopeptides as surfactin (m/z 1,023 Da) and fengycin (m/z 1,495 Da) isoforms. The purified marine lipopeptides displayed a significant antiproliferative activity against the human colon cancer cell lines HCT-15 (IC50 80 μg ml−1) and HT-29 (IC50 120 μg ml−1).  相似文献   

3.
The development of new high throughput methods based on different materials with chemical modifications for protein profiling of complex mixtures leads towards biomarkers; used particularly for early diagnosis of a disease. In this work, diamond-like carbon (DLC) is developed and optimized for serum protein profiling by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS). This study is carried out in connection with a material-based approach, termed as material-enhanced laser desorption ionization mass spectrometry. DLC is selected as carrier surface which provides large surface to volume ratio and offers high sensitivity. DLC has a dual role of working as MALDI target while acting as an interface for protein profiling by specifically binding peptides and proteins out of serum samples. Serum constituents are bound through immobilized metal ion affinity chromatography (IMAC) functionality, created through glycidyl methacrylate polymerization under ultraviolet light followed by further derivatization with iminodiacetic acid and copper ion loading. Scanning electron microscopy highlights the morphological characteristics of DLC surface. It could be demonstrated that IMAC functionalized DLC coatings represent a powerful material in trapping biomolecules for their further analysis by MALDI-MS resulting in improved sensitivity, specificity and capacity in comparison to other protein-profiling methods.  相似文献   

4.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

5.
An endophytic Xylaria sp., having broad antimicrobial activity, was isolated and characterized from Ginkgo biloba L. From the culture extracts of this fungus, a bioactive compound P3 was isolated by bioactivity-guided fractionation and identified as 7-amino-4-methylcoumarin by nuclear magnetic resonance, infrared, and mass spectrometry spectral data. The compound showed strong antibacterial and antifungal activities in vitro against Staphylococcus aureus [minimal inhibitory concentrations (MIC) 16 μg·ml−1], Escherichia coli (MIC, 10 μg·ml−1), Salmonella typhia (MIC, 20 μg·ml−1), Salmonella typhimurium (MIC, 15 μg·ml−1), Salmonella enteritidis (MIC, 8.5 μg·ml−1), Aeromonas hydrophila (MIC, 4 μg·ml−1), Yersinia sp. (MIC, 12.5 μg·ml−1), Vibrio anguillarum (MIC, 25 μg·ml−1), Shigella sp. (MIC, 6.3 μg·ml−1), Vibrio parahaemolyticus (MIC, 12.5 μg·ml−1), Candida albicans (MIC, 15 μg·ml−1), Penicillium expansum (MIC, 40 μg·ml−1), and Aspergillus niger (MIC, 25 μg·ml−1). This is the first report of 7-amino-4-methylcoumarin in fungus and of the antimicrobial activity of this metabolite. The obtained results provide promising baseline information for the potential use of this unusual endophytic fungus and its components in the control of food spoilage and food-borne diseases.  相似文献   

6.
The vitamin content of microalgae used in aquaculture   总被引:4,自引:0,他引:4  
The vitamin content in four Australian microalgae, a Nannochloropsis-like sp., Pavlova pinguis, Stichococcus sp. and Tetraselmis sp., were examined. These were grown under a 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Typically, the content showed a two- to three fold range between the species. When expressed on a dry weight basis, the content of ascorbate ranged from 1.3 to 3.0 mg g−1, β-carotene from 0.37 to 1.05 mg g−1, α-tocopherol from 0.07 to 0.29 mg g−1, thiamine from 29 to 109 μg g−1, riboflavin from 25 to 50 μg g−1, total folates from 17 to 24 μg g−1, pyridoxine from 3.6 to 17 μg g−1, cobalamin from 1.70 to 1.95 μg g−1 and biotin from 1.1 to 1.9 μg g−1. Retinol was detected only in Tetraselmis sp. (2.2 μg g−1); any vitamins D2 or D3 were below the detection limit (≤0.45 μg g−1). Nannochloropsis sp. was also grown under a 24:0 h light:dark light cycle and harvested at stationary phase. The content of most vitamins in Nannochloropsis sp. cultures differed significantly, and the degree of variation was similar to that observed between the four species grown under 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Thiamine content was also examined in six non-Australian strains commonly used in aquaculture, Chaetoceros muelleri, Thalassiosira pseudonana, Nannochloris atomus, Nannochloropsis oculata, Isochrysis sp. (T.ISO) and Pavlova lutheri. Values (average 61 μg g−1; range 40 to 82) were similar to those in the Australian strains (average 61 μg g−1; range 29 to 109) and increased during stationary phase (average 94 μg g−1; 38 to 131). Comparison of the data with the known nutritional requirements for marine fish species and prawns suggests that the microalgae should provide excess or adequate levels of the vitamins for aquaculture food chains. The data may be used to guide the content of vitamins included in micro-diets developed as replacements for live diets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary As a first step towards applying biotechnology to blue grama, Bouteloua gracilis (H. B. K.) Lag. ex Steud., we have developed a regenerable tissue culture system for this grass. Shoot apices were isolated from 3-d-old seedlings and cultured in 15 different growth regulator formulations combining 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (4-amino-3, 5,6-trichloropicolinic acid), N6-benzyladenine (BA) or adenine (6-aminopurine). The highest induction of organogenic callus was obtained with formulations containing 1 mg l−1 (4.52 μM) 2,4-D plus 0.5 mg l−1 (2.22 μM) BA. and 2 mg l−1 (8.88 μM) BA plus 1 mg l−1 (4.14 μM) Picloram with or without 40 mg l−1 (296.08 μM) adenine. Lower frequencies of induction were obtained for embryogenic as compared to organogenic callus. The most efficient treatments for induction of embryogenic callus contained 2 mg l−1 (9.05 μM) 2,4-D combined with 0.25 (1.11 μM) or 0.50 mg l−1 (2.22 μM) BA, or 1 mg l−1 (4.52 μM) 2,4-D with 0.50 mg l−1 (2.22 μM) BA. Regeneration was achieved in hormonefree Murashige anmd Skoog (MS) medium, half-strength MS medium or MS medium plus 1 mg l−1 (1.44 μM) gibberellic acid. The number of plantlets regenerated per 500 mg callus fresh weight on MS medium ranged from 9 for 2 mg l−1 (9.05 μM) 2,4-D to 62.2 for induction medium containing 2 mg l−1 (8,28 μM) Picloram, 1 mg l−1 (4.44 μM) BA and 40 mg l−1 (296.08 μM) adenine. Regnerated plants grown in soil under greenhouse conditions reached maturity and produced seeds.  相似文献   

8.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Effects of size, shape, and pyrene doping on electronic properties of graphene nanoflakes (GNFs) were theoretically investigated using density functional theory method with PBE, B3PW91, and M06-2X functionals and cc-pVDZ basis set. Two shapes of zigzag GNFs, hexagonal (HGN) and rhomboidal (RGN), were considered. The energy band gap of GNF depends on shape and decreases with size. The HGN has larger band gap energy (1.23–3.96 eV) than the RGN (0.13–2.12 eV). The doping of pyrene and pyrene derivatives on both HGN and RGN was also studied. The adsorption energy of pyrene and pyrene derivatives on GNF does not depend on the shape of GNFs with energies between 21 and 27 kcal mol?1. The substituent on pyrene enhances the binding to GNF but the strength does not depend on electron withdrawing or donating capability. The doping by pyrene and pyrene derivatives also shifts the HOMO and LUMO energies of GNFs. Both positive (destabilizing) and negative (stabilizing) shifts on HOMO and LUMO of GNFs were seen. The direction and magnitude of the shift do not follow the electron withdrawing and donating capability of pyrene substituents. However, only a slight shift was observed for doped RGN. A shift of 0.19 eV was noticed for HOMO of HGN doped with 1-aminopyrene (pyNH2) and of 0.04 eV for LUMO of HGN doped with 1-pyrenecarboxylic acid (pyCOOH).
Graphical Abstract HOMO and LUMO Energies of pyrene/pyrene derivatives doped Graphene Nanoflakes
  相似文献   

10.
Summary Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.  相似文献   

11.
Batch experiments were conducted to evaluate the biodegradation rates of limonene, α-pinene, γ-terpinene, terpinolene and α-terpineol at 23 °C under aerobic conditions. Biodegradation was demonstrated by the depletion of monoterpene mass, CO2 production and a corresponding increase in biomass. Monoterpene degradation in liquid cultures devoid of soil followed Monod kinetics. The maximum specific growth rate (μmax) was 0.02 h−1 and 0.06 h−1 and the half-velocity constant (K s ) varied from 32 mg/l to 3 mg/l for the limonene and α-terpineol respectively. The recovery of monoterpenes by solvent extraction from autoclaved and azide-amended soil-slurry samples decreased over time and ranged from 69% to 73% for 120 h of incubation period. Although a significant fraction of monoterpene hydrocarbon could not be extracted, mineralization of these compounds in the soil-slurry systems took place, as shown by CO2 production. The soil-normalized degradation rates for the hydrocarbon monoterpenes ranged from 0.6 μg g−1 h−1 to 2.1 μg g−1 h−1. A kinetic model – which combined monoterpene biodegradation in the liquid phase and net desorption – was developed and applied to data obtained from soil-slurry assays. Received: 10 September 1996 / Received revision: 16 December 1996 / Accepted: 10 January 1997  相似文献   

12.
The aim of this work was to evaluate phytohormone biosynthesis, siderophores production, and phosphate solubilization in three strains (E109, USDA110, and SEMIA5080) of Bradyrhizobium japonicum, most commonly used for inoculation of soybean and nonlegumes in USA, Canada, and South America. Siderophore production and phosphate solubilization were evaluated in selective culture conditions, which had negative results. Indole-3-acetic acid (IAA), gibberellic acid (GA3), and abscisic acid (ABA) production were analyzed by gas chromatography–mass spectrometry (GC-MS). Ethylene and zeatin biosynthesis were determined by GS–flame ionization detection and high-performance liquid chromatography (HPLC-UV), respectively. IAA, zeatin, and GA3 were found in all three strains; however, their levels were significantly higher (p < 0.01) in SEMIA5080 (3.8 μg ml−1), USDA110 (2.5 μg ml−1), and E109 (0.87 μg ml−1), respectively. ABA biosynthesis was detected only in USDA110 (0.019 μg ml−1). Ethylene was found in all three strains, with highest production rate (18.1 ng ml−1 h−1) in E109 cultured in yeast extract mannitol medium plus l-methionine. This is the first report of IAA, GA3, zeatin, ethylene, and ABA production by B. japonicum in pure cultures, using quantitative physicochemical methodology. The three strains have differential capability to produce the five major phytohormones and this fact may have an important technological implication for inoculant formulation.  相似文献   

13.
During an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced a peak in the top-most muddy sediment (380 μM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 μM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 μM to 100 μM for ammonium and from 0.05 μM to 16 μM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, in both muddy (104 nmol cm−2 d−1––NH4+; 8 nmol cm−2 d−1––HPO4−2) and sandy sediments (26 nmol cm−2 d−1––NH4+; 1 nmol cm−2 d−1––HPO4−2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year−1––NH4+; 2 ton year−1––HPO4−2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.  相似文献   

14.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

15.
The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS-Mn, DS-Co), phenylalanine ammonia-lyase (PAL), and chalcone synthase (CHS) was monitored at various light intensities (dark, 8.88 μmol m−2 s−1, 88.8 μmol m−2 s−1) using a strawberry cell suspension culture. DS-Mn, PAL, and CHS were found to increase significantly (p>0.05) under light intensitie of 88.8 μmol m−2 s−1 compared to those of 8.88 μmol m−2 s−1 and dark. The activity of DS-Mn, PAL, and CHS were maximum at 88.8 μmol m−2 s−1. Anthocyanin content reached a maximum after 48–60 h of culturing at 88.8 μmol m−2 s−1. DS-Co showed greater activity than DS-Mn during cell culturing, but showed no correlation with anthocyanin production and light intensity. The CHS gene expression was continuous at a light intensity of 88.8 μmol m−2 s−1. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In this investigation, clastogenic effects of Thymus kotschyanus var. glabrescens Boiss. extract (TE) and anticlastogenic effects of this extract against Mitomycin C (MMC) induced chromosome damage have been evaluated in human peripheral blood lymphocytes in vitro. Two series of experiments were conducted. In the first, only 10−5, 10−4, 10−3 and 10−2 μl ml−1 concentrations of TE were used for 48 h to detect potential clastogenicity. In the second, MMC (0.38 μg ml−1) plus 10−5, 10−4, 10−3 and 10−2 μl ml−1 concentrations of TE were used for 48 h to determine anticlastogenic effects. TE did not increase sister chromatid exchanges (SCEs) (except 10−2 μl ml concentration) and chromosome aberrations (CAs) significantly compared with negative and solvent controls. However, it decreased the frequency of MMC induced chromosome aberrations. Decreasing was significant at 10−4, 10−3 and 10−2 μl ml−1 concentrations. On the other hand, TE significantly increased MMC-induced SCEs for all treatment groups compared with positive control.  相似文献   

17.
The influence of brackish phytoplankton cell classes upon the response of urea decomposition was investigated in Lake Nakaumi. The urea decomposition rate was 5 to 350 μmol urea m−3 h−1 in the light and 3 to 137 μmol urea m−3 h−1 in the dark. The urea decomposition rates in the light were obviously higher than in the dark. An extremely high rate (350 μmol urea m−3 h−1) was observed in Yonago Bay. The rate in the smaller fraction (<5 μm) exceeded that in the middle (5–25 μm) and larger fractions (>25 μm). The chlorophyll- and photosynthesis-specific rates for urea decomposition in the light were 0.5 to 3.9 μmol urea mg chl.a −1 h−1 and 0.3 to 1.3 μmol urea mg photo.C−1. The specific urea decomposing activities were higher in the smaller fraction than in the other two fractions. The present results suggest that in brackish waters urea decomposition occurred with coupling to the standing crop and photosynthetic activity of phytoplankton. Received: May 22, 1999 / Accepted: August 15, 1999  相似文献   

18.
To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of 15N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R d), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R d values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R d values ranged from 0.9 μmol 100 g−1 h−1 (lysine) to 22.1 μmol 100 g−1 h−1 (threonine) with most values falling between 2 and 6 μmol 100 g−1 h−1. There was a significant correlation between R d and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.  相似文献   

19.
Critical levels of selenium in raya (Brassica juncea Czern L.), maize (Zea mays L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were worked out by growing these crops in an alkaline silty loam soil treated with different levels of selenite-Se ranging from 1 to 25 μg g−1 soil. Significant decrease in dry matter yield was observed above a level of 5 μg Se g−1 soil in raya and maize; 4 μg Se g−1 soil in wheat and 10 μg Se g−1 soil in rice shoots. The critical level of Se in plants above which significant decrease in yield would occur was found to be 104.8 μg g−1 in raya, 76.9 μg g−1 in maize, 41.5 μg g−1 in rice and 18.9 μg g−1 in wheat shoots. Significant coefficients of correlation were observed between Se content above the critical level and dry matter yield of raya as well as rice (r = −0.99, P ≤ 0.01), wheat (r = −0.97, P ≤ 0.01) and maize ((r = −0.96, P ≤ 0.01). A synergistic relationship was observed between S and Se content of raya (r = 0.96, P ≤ 0.01), wheat (r = 0.89, P ≤ 0.01), rice (r = 0.85, P ≤ 0.01) and maize (r = 0.84, P ≤ 0.01). Raya, maize and rice absorbed Se in levels toxic for animal consumption (i.e. > 5 mg Se kg−1) when the soil was treated with more than 1.5 μg Se g−1. In case of wheat, application of Se more than 3 μg g−1 soil resulted in production of toxic plants.  相似文献   

20.
Pectic polysaccharides from dietary sources such as Decalepis hamiltonii—swallow root (SRPP), Hemidesmus indicus (HPP), Nigella sativa—black cumin (BCPP), Andrographis serpyllifolia—(APP), Zingiber officinale—ginger (GRPP) and, citrus pectin (CPP) were examined for galectin inhibitory activity. Inhibition of (a) galectin-3 of MDA-MB-231 cells induced hemagglutination of red blood cells; (b) galectin-3 mediated interaction between normal/metastatic human buccal cells (NBC)/(MBC) and; (c) invasion of MDA-MB-231 and MBC in the invasive chamber was assessed. Results indicated that SRPP inhibited hemagglutination at Minimum Inhibitory Concentration (MIC) of 1.86 μg ml−1 equivalent of carbohydrate as apposed to those of BCPP (130 μg ml−1), APP (40 μg ml−1), HPP (40 μg ml−1) and CPP (25 μg ml−1). GRPP even at concentration >1–6 mg ml−1 did not inhibit agglutination. Also SRPP showed ∼15 and 2 fold potent anti hemagglutination activity relative to that of galectin-3 specific sugars—galactose (MIC-27.1 μg ml−1) and lactose (MIC-4.16 μg ml−1) respectively. Further, SRPP at 10 μg ml−1 inhibited agglutination of NBC by galectin-3 of MDA-MB-231 cells. Modified swallow root pectic polysaccharide (MSRPP) of 50 kDa retained anti hemagglutination activity (MIC of 1.03 μg ml−1) and inhibited MDA-MB-231 and MBC invasion by 73 and 50% with an IC50 of 136 and 200 μg ml−1 respectively. Both SRPP and MSRPP induced apoptosis up to 80% at 100 μg ml−1 concentration by activating ∼2 and 8 folds of Caspase-3 activity. Sugar composition analysis and its correlation with the galectin inhibitory property indicated that pectic polysaccharides with higher arabinose and galactose content—arabinogalactan inhibited hemagglutination significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号