首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Sister species divergence and reproductive isolation commonly results from ecological adaptation. In mimetic Heliconius butterflies, shifts in colour pattern contribute to pre- and post-mating reproductive isolation and are commonly correlated with speciation. Closely related mimetic species are therefore not expected, as they should lack several important sources of reproductive isolation.  相似文献   

2.

Background  

It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving Bos and Bison species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (Zp2 and Zp3) for seven representative species (111 individuals) from the Bovini tribe, including five species from Bos and Bison, and two species each from genera Bubalus and Syncerus.  相似文献   

3.

Background  

Recent theoretical and empirical work points toward a significant role for sex-chromosome linked genes in the evolution of traits that induce reproductive isolation and for traits that evolve under influence of sexual selection. Empirical studies including recently diverged (Pleistocene), short-lived avian species pairs with short generation times have found that introgression occurs on the autosomes but not on the Z-chromosome. Here we study genetic differentiation and gene flow in the long-lived greater spotted eagle (Aquila clanga) and lesser spotted eagle (A. pomarina), two species with comparatively long generation times.  相似文献   

4.

Background  

Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps.  相似文献   

5.
Documenting natural hybrid systems builds our understanding of mate choice, reproductive isolation and speciation. The stick insect species Clitarchus hookeri and C. tepaki differ in their genital morphology and hybridize along a narrow peninsula in northern New Zealand. We utilize three lines of evidence to understand the role of premating isolation and species boundaries: (a) genetic differentiation using microsatellites and mitochondrial DNA; (b) variation in 3D surface topology of male claspers and 2D morphometrics of female opercular organs; and (c) behavioural reproductive isolation among parental and hybrid populations through mating crosses. The genetic data show introgression between the parental species and formation of a genetically variable hybrid swarm. Similarly, the male and female morphometric data show genital divergence between the parental species as well as increased variation within the hybrid populations. This genital divergence has not resulted in reproductive isolation between species, instead weak perimating isolation has enabled the formation of a hybrid swarm. Behavioural analysis demonstrates that the entire mating process influences the degree of reproductive isolation between species undergoing secondary contact. Mechanical isolation may appear strong, whereas perimating isolation is weak.  相似文献   

6.

Background and Aims

The events leading to speciation are best investigated in systems where speciation is ongoing or incomplete, such as incipient species. By examining reproductive barriers among incipient sister taxa and their congeners we can gain valuable insights into the relative timing and importance of the various barriers involved in the speciation process. The aim of this study was to identify the reproductive barriers among sexually deceptive orchid taxa in the genus Chiloglottis.

Methods

The study targeted four closely related taxa with varying degrees of geographic overlap. Chemical, morphological and genetic evidence was combined to explore the basis of reproductive isolation. Of primary interest was the degree of genetic differentiation among taxa at both nuclear and chloroplast DNA markers. To objectively test whether or not species boundaries are defined by the chemistry that controls pollinator specificity, genetic analysis was restricted to samples of known odour chemistry.

Key Results

Floral odour chemical analysis was performed for 600+ flowers. The three sympatric taxa were defined by their specific chiloglottones, the semiochemicals responsible for pollinator attraction, and were found to be fully cross-compatible. Multivariate morphometric analysis could not reliably distinguish among the four taxa. Although varying from very low to moderate, significant levels of genetic differentiation were detected among all pairwise combinations of taxa at both nuclear and chloroplast loci. However, the levels of genetic differentiation were lower than expected for mature species. Critically, a lack of chloroplast DNA haplotype sharing among the morphologically indistinguishable and most closely related taxon pair confirmed that chemistry alone can define taxon boundaries.

Conclusions

The results confirmed that pollinator isolation, mediated by specific pollinator attraction, underpins strong reproductive isolation in these taxa. A combination of large effective population sizes, initial neutral mutations in the genes controlling floral scent, and a pool of available pollinators likely drives diversity in this system.  相似文献   

7.

Background and Aims

The maintenance of species boundaries in sympatric populations of closely related species requires some kind of reproductive isolation that limits gene flow among species and/or prevents the production of viable progeny. Because in orchids mycorrhizal fungi are needed for seed germination and subsequent seedling establishment, orchid–mycorrhizal associations may be involved in acting as a post-mating barrier.

Methods

We investigated the strength of post-mating barriers up to the seed germination stage acting between three closely related Orchis species (Orchis anthropophora, O. militaris and O. purpurea) and studied the role of mycorrhizal fungi in hybridization by burying seed packets of pure and hybrid seeds. After retrieval and assessment of seed germination, the fungi associating with protocorms originating from hybrid and pure seeds were determined and compared with those associating with adult individuals using DNA array technology.

Results

Whereas pre-zygotic post-mating barriers were rather weak in most crosses, post-zygotic post-mating barriers were stronger, particularly when O. purpurea was crossed with O. anthropophora. Germination trials in the field showed that seed germination percentages of hybrid seeds were in most cases lower than those originating from pure crosses. In all species pair combinations, total post-mating reproductive isolation was asymmetric. Protocorms associated with a smaller range of fungal symbionts than adult plants, but there was considerable overlap in mycorrhizal associations between protocorms and their respective parents.

Conclusions

Our results suggest that mycorrhizal associations contribute little to reproductive isolation. Pre-mating barriers are probably the main factors determining hybridization rates between the investigated species.  相似文献   

8.

Background  

Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported.  相似文献   

9.

Background  

The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), whose distributions overlap in Central and Northwestern South America.  相似文献   

10.

Background  

The intertidal copepod Tigriopus californicus is a model for studying the process of genetic divergence in allopatry and for probing the nature of genetic changes that lead to reproductive isolation. Although previous studies have revealed a pattern of remarkably high levels of genetic divergence between the populations of this species at several spatial scales, it is not clear what types of historical processes are responsible. Particularly lacking are data that can yield insights into population history from the finest scales of geographic resolution.  相似文献   

11.
The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre‐ versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre‐ and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co‐occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species‐dependent asymmetries, morph‐dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short‐styled flowers to stigmas of long‐styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long‐styled flowers to stigmas of short‐styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long‐styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore, patterns of gene flow across species boundaries are likely affected by floral morph composition of adjacent populations. To summarize, our study highlights the general importance of premating isolation and newly illustrates that both morph‐ and species‐dependent asymmetries shape boundaries between heterostylous species.  相似文献   

12.

Background  

As exemplified by the famously successful model organism Caenorhabditis elegans, nematodes offer outstanding animal systems for investigating diverse biological phenomena due to their small genome sizes, short generation times and ease of laboratory maintenance. Nematodes in the genus Panagrolaimus have served in comparative development and anhydrobiosis studies, and the Antarctic species P. davidi offers a powerful paradigm for understanding the biological mechanisms of extreme cold tolerance. Panagrolaimus nematodes are also unique in that examples of gonochoristic, hermaphroditic and parthenogenetic reproductive modes have been reported for members of this genus. The evolutionary origins of these varying reproductive modes and the Antarctic species P. davidi, however, remain enigmatic.  相似文献   

13.

Background  

An open, focal issue in evolutionary biology is how reproductive isolation and speciation are initiated; elucidation of mechanisms with empirical evidence has lagged behind theory. Under ecological speciation, reproductive isolation between populations is predicted to evolve incidentally as a by-product of adaptation to divergent environments. The increased genetic diversity associated with interspecific hybridization has also been theorized to promote the development of reproductive isolation among independent populations. Using the fungal model Neurospora, we founded experimental lineages from both intra- and interspecific crosses, and evolved them in one of two sub-optimal, selective environments. We then measured the influence that initial genetic diversity and the direction of selection (parallel versus divergent) had on the evolution of reproductive isolation.  相似文献   

14.

Background  

Bacteria of the genus Wolbachia are reproductive parasites widespread among arthropods. The most common effect arising from the presence of Wolbachia in a population is Cytoplasmic Incompatibility (CI), whereby postmating reproductive isolation occurs in crosses between an infected male and an uninfected female, or when a male is infected with a different strain of Wolbachia to that of the female (bidirectional CI). Previous theoretical models have demonstrated that bidirectional CI can contribute to the genetic divergence of populations in haploid and diploid organisms. However, haplodiploid organisms were not considered in these models even though they include Nasonia parasitoid wasps – the best example of the implication of Wolbachia in ongoing speciation. Moreover, previous work did not investigate inbreeding mating systems, which are frequently observed in arthropod species.  相似文献   

15.
Hybridization between diverged taxa tests the strength of reproductive isolation and can therefore reveal mechanisms of reproductive isolation. However, it remains unclear how consistent reproductive isolation is across species' ranges and to what extent reproductive isolation might remain polymorphic as species diverge. To address these questions, we compared outcomes of hybridization across species pairs of Catostomus fishes in three rivers in the Upper Colorado River basin, where an introduced species, C. commersoni, hybridizes with at least two native species, C. discobolus and C. latipinnis. We observed substantial heterogeneity in outcomes of hybridization, both between species pairs and across geographically separate rivers within each species pair. We also observed hybridization of additional related species with our focal species, suggesting that reproductive isolation in this group involves interactions of multiple evolutionary and ecological factors. These findings suggest that a better understanding of the determinants of variation in reproductive isolation is needed and that studies of reproductive isolation in hybrids should consider how the dynamics and mechanisms of reproductive isolation vary over ecological space and over evolutionary time. Our results also have implications for the conservation and management of native catostomids in the Colorado River basin. Heterogeneity in outcomes of hybridization suggests that the threat posed by hybridization and genetic introgression to the persistence of native species probably varies with extent of reproductive isolation, both across rivers and across species pairs.  相似文献   

16.

Background  

Mitochondrial DNA sequencing increasingly results in the recognition of genetically divergent, but morphologically cryptic lineages. Species delimitation approaches that rely on multiple lines of evidence in areas of co-occurrence are particularly powerful to infer their specific status. We investigated the species boundaries of two cryptic lineages of the land snail genus Trochulus in a contact zone, using mitochondrial and nuclear DNA marker as well as shell morphometrics.  相似文献   

17.
The key process in speciation concerns the formation and maintenance of reproductive isolating barriers between diverging lineages. Although species boundaries are frequently investigated between two species across many taxa, reproductive isolating barriers among multiple species (>2) that would represent the most common phenomenon in nature, remain to be clarified. Here, we use double digest restriction‐site associated DNA (ddRAD) sequencing to examine patterns of hybridization at a sympatric site where three Ligularia species grow together and verify whether those patterns contribute to the maintenance of boundaries among species. The results based on the RAD SNP datasets indicated hybridization Ligularia cyathiceps × L. duciformis and L. duciformis × L. yunnanensis were both restricted to F1s plus a few first‐generation backcrosses and no gene introgression were identified, giving rise to strong reproductive isolation among hybridizing species. Moreover, hybrid swarm simulation, using HYBRIDLAB, indicated the RAD SNP datasets had sufficient discriminatory power for accurate hybrid detection. We conclude that parental species show strong reproductive isolation and they still maintain species boundaries, which may be the key mechanism to maintain species diversity of Ligularia in the eastern Qinghai‐Tibetan Plateau and adjacent areas. Moreover, this study highlights the effectiveness of RAD sequencing in hybridization studies.  相似文献   

18.
Accessory gland proteins (Acps) are part of the seminal fluid of male Drosophila flies. Some Acps have exceptionally high evolutionary rates and evolve under positive selection. Proper interactions between Acps and female reproductive molecules are essential for fertilization. These observations lead to suggestions that fast evolving Acps could be involved in speciation by promoting reproductive incompatibilities between emerging species. To test this hypothesis, we used population genetics data for three sibling species: D. mayaguana, D. parisiena and D. straubae. The latter two species are morphologically very similar and show only incipient reproductive isolation. This system allowed us to examine Acp evolution at different time frames with respect to speciation and reproductive isolation. Comparing data of 14 Acp loci with data obtained for other genomic regions, we found that some Acps show extraordinarily high levels of divergence between D. mayaguana and its two sister species D. parisiena and D. straubae. This divergence was likely driven by adaptive evolution at several loci. No fixed nucleotide differences were found between D. parisiena and D. straubae, however. Nevertheless, some Acp loci did show significant differentiation between these species associated with signs of positive selection; these loci may be involved in this early phase of the speciation process.  相似文献   

19.

Background  

Horizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis. Sulfonamide resistance in Neisseria meningitidis is mediated by altered chromosomal folP genes. At least some folP alleles conferring resistance have been horizontally acquired from other species, presumably from commensal Neisseriae. In this work, the DNA sequence surrounding folP in commensal Neisseria species was determined and compared to corresponding regions in pathogenic Neisseriae, in order to elucidate the potential for inter-species DNA transfer within this region.  相似文献   

20.

Background  

A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号