首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the isolation and characterization of a gene (MAELO) that encodes a fatty acid elongase from arachidonic acid-producing fungus Mortierella alpina 1S-4. Although the homologous MAELO gene had already been isolated from M. alpina ATCC 32221, its function had not yet been identified. The MAELO gene from M. alpina 1S-4 was confirmed to encode a fatty acid elongase by its expression in yeast Saccharomyces cerevisiae. Analysis of the fatty acid composition of the yeast transformant revealed the accumulation of 22-, 24-, and 26-carbon saturated fatty acids. On the other hand, RNA interference of the MAELO gene in M. alpina 1S-4 was carried out. The gene-silenced strain obtained on RNA interference exhibited low contents of 20-, 22-, and 24-carbon saturated fatty acids and a high content of stearic acid (18 carbons), compared with those in the wild strain. The enzyme encoded by the MAELO gene was demonstrated to be involved in the biosynthesis of 20-, 22-, and 24-carbon saturated fatty acids in M. alpina 1S-4.  相似文献   

2.
This study was carried out to identify unknown allelochemicals released from Myriophyllum spicatum and to investigate their anti-cyanobacterial effects. A series of analyses of culture solutions and methanol extracts of M. spicatum using gas chromatograph equipped with a mass selective detector revealed that M. spicatum released fatty acids, specifically, nonanoic, tetradecanoic, hexadecanoic, octadecanoic, and octadecenoic acids. Nonanoic, cis-6-octadecenoic, and cis-9-octadecenoic acids significantly inhibited growth of Microcystis aeruginosa, whereas tetradecanoic, hexadecanoic, and octadecanoic acids did not show any effect. When the inhibitory effect of nonanoic acid was compared with those of 4 polyphenols and eugeniin, which are anti-cyanobacterial compounds previously reported to be released by M. spicatum, nonanoic acid was found to be the most inhibitory to M. aeruginosa. These results indicate that not only polyphenols and eugeniin but also fatty acids such as nonanoic acid must be studied to reveal how M. spicatum exerts its allelopathic effect on M. aeruginosa.  相似文献   

3.
Studies on the application of functional lipids such as polyunsaturated fatty acids (PUFAs) have proceeded in various fields regarding health and dietary requirements in a search for novel and rich sources. Filamentous fungus Mortierella alpina 1S-4 produces triacylglycerols rich in arachidonic acid, ones reaching 20 g/L and containing 30–70% arachidonic acid as to the total fatty acids. Mutants derived from M. alpina 1S-4, defective in Δ5 and Δ6 desaturases, accumulate triacylglycerols rich in unique PUFAs, i.e., dihomo-γ-linolenic acid and Mead acid, respectively. Furthermore, various mutants derived from M. alpina 1S-4 have led to the production of oils containing n−1, n−3, n−4, n−6, n−7, and n−9 PUFAs. A variety of genes encoding fatty acid desaturases and elongases involved in PUFA biosynthesis in M. alpina 1S-4 has been isolated and characterized. Molecular breeding of M. alpina strains by means of manipulation of these genes facilitates improvement of PUFA productivity and elucidation of the functions of enzymes involved in PUFA biosynthesis.  相似文献   

4.
Five mutants were obtained, Y11, Y135, Y164, Y180 and Y61, capable of accumulating higher amounts of arachidonic acid (AA) than Mortierella alpina 1S-4, an industrial strain for the production of AA-rich triacylglycerol (TG). This is thought to be due to low or no activity of n-3 desaturation with conversion of AA to eicosapentaenoic acid, which functions at a cultural temperature below 20°C. In small-scale cultivation under optimum conditions, Y11 and Y61 respectively accumulated 4.97 mg/ml and 4.11 mg/ml of AA, using a high concentration of glucose at 20°C, compared with 3.74 mg/ml for M. alpina 1S-4. In a 5-l jar fermentor, the AA content in Y11 and Y61 kept increasing during cultivation, with consumption of the glucose in the medium; and this reached 1.48 mg/ml and 1.77 mg/ml (118 mg/g, 120 mg/g of dry mycelia) at day 10, respectively, compared with 0.95 mg/ml (86 mg/g of dry mycelia) for M. alpina 1S-4. From the results of lipid analysis, the TG contents of Y11 and Y61 in the major lipids were significantly higher than that of M. alpina 1S-4; and the AA percentages in TG of Y11 and Y61 were also higher. Both Y11 and Y61 are potential producers of TG rich in AA.  相似文献   

5.
An oleaginous fungus, Mortierella alpina 1S-4, is used commercially for arachidonic acid production. Δ12-Desaturase, which desaturates oleic acid (18:1n-9) to linoleic acid (18:2n-6), is a key enzyme in the arachidonic acid biosynthetic pathway. To determine if RNA interference (RNAi) by double-stranded RNA occurs in M. alpina 1S-4, we silenced the Δ12-desaturase gene. The silenced strains accumulate 18:2n-9, 20:2n-9, and Mead acid (20:3n-9), which are not detected in either the control strain or wild type strain 1S-4. The fatty acid composition of stable transformants was similar to that of Δ12-desaturation-defective mutants previously identified. Thus, RNAi occurs in M. alpina and could be used to alter the types and relative amounts of fatty acids produced by commercial strains of this fungus without mutagenesis or other permanent changes in the genetic background of the producing strains.  相似文献   

6.
A filamentous fungus, Mortierella alpina 1S-4, is capable of producing not only arachidonic acid (AA; 20:4n-6) but also eicosapentaenoic acid (EPA; 20:5n-3) below a cultural temperature of 20°C. Here, we describe the isolation and characterization of a gene (maw3) that encodes a novel 3-desaturase from M. alpina 1S-4. Based on the conserved sequence information for M. alpina 1S-4 12-desaturase and Saccharomyces kluyveri 3-desaturase, the 3-desaturase gene from M. alpina 1S-4 was cloned. Homology analysis of protein databases revealed that the amino acid sequence showed 51% identity, at the highest, with M. alpina 1S-4 12-desaturase, whereas it exhibited 36% identity with Sac. kluyveri 3-desaturase. The cloned cDNA was confirmed to encode the 3-desaturase by its expression in the yeast Sac. cerevisiae. Analysis of the fatty acid composition of the yeast transformant demonstrated that 18-carbon and 20-carbon n-3 polyunsaturated fatty acids (PUFAs) were accumulated through conversion of exogenous 18-carbon and 20-carbon n-6 PUFAs. The substrate specificity of the M. alpina 1S-4 3-desaturase differs from those of the known fungal 3-desaturases from Sac. kluyveri and Saprolegnia diclina. Plant, cyanobacterial and Sac. kluyveri 3-desaturases desaturate 18-carbon n-6 PUFAs, Spr. diclina 3-desaturase desaturates 20-carbon n-6 PUFAs and Caenorhabditis elegans 3-desaturase prefers 18-carbon n-6 PUFAs as substrates rather than 20-carbon n-6 PUFAs. The substrate specificity of M. alpina 1S-4 3-desaturase is rather similar to that of C. elegans 3-desaturase, but the M. alpina 3-desaturase can more effectively convert AA into EPA when expressed in yeast. The M. alpina 1S-4 3-desaturase is the first known fungal desaturase that uses both 18-carbon and 20-carbon n-6 PUFAs as substrates.  相似文献   

7.
Gene manipulation tools for an arachidonic-producing filamentous fungus, Mortierella alpina 1S-4, have not been sufficiently developed. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was investigated for M. alpina 1S-4 transformation, using the uracil-auxotrophic mutant (ura5 strain) of M. alpina 1S-4 as a host strain and the homologous ura5 gene as a selectable marker gene. Furthermore, the gene for ω3-desaturase, catalyzing the conversion of n-6 fatty acid to n-3 fatty acid, was overexpressed in M. alpina 1S-4 by employing the ATMT system. As a result, we revealed that the frequency of transformation surpassed 400 transformants/108 spores, most of the integrated T-DNA appeared as a single copy at a random position in chromosomal DNA, and most of the transformants (60 to 80%) showed mitotic stability. Moreover, the accumulation of n-3 fatty acid in transformants was observed under the conditions of optimal ω3-desaturase gene expression. In particular, eicosapentaenoic acid (20:5n-3), an end product of n-3 fatty acids synthesized in M. alpina 1S-4, reached a maximum of 40% of total fatty acids. In conclusion, the ATMT system was found to be effective and suitable for the industrial strain Mortierella alpina 1S-4 and will be a useful tool for basic mutagenesis research and for industrial breeding of this strain.Two decades ago, a filamentous zygomycete fungus, Mortierella alpina 1S-4, was isolated from soil as a potent producer of polyunsaturated fatty acids (PUFAs) in our laboratory and was utilized for commercial production of arachidonic acid (AA) (20:4n-6) (21). Breeding of mutants derived from the wild strain led to the production of dihomo-γ-linolenic acid (20:3n-6) and Mead acid (20:3n-9) (10-12) (Fig. (Fig.1).1). Furthermore, we attempted to produce other PUFAs synthesized in M. alpina 1S-4, since some fatty acids (e.g., 18:2n-9, 18:4n-3, and 20:4n-3) have limited natural sources and could have promising beneficial physiological effects (9). In particular, for microbial production of n-3 PUFAs, currently prepared from fish oil, it is necessary to achieve stable productivity and quality; however, mutation treatment caused low activity of the specific enzymes involved in PUFA biosynthesis, which is unsuitable for industrial application. In addition, gene manipulation tools have not been sufficiently developed for metabolic control of the PUFA synthetic pathway. Genetic manipulation is a new means of molecularly breeding industrial strains, analyzing their physiological properties, and clarifying the biosynthetic pathway to PUFAs. A comprehensive transformation system for this fungus has been fundamentally established. It involves a uracil-auxotrophic mutant (ura5 strain) as a host strain, a homologous ura5 gene as a selectable marker gene, and transformation through the biolistic method, which is the only effective method (24).Open in a separate windowFIG. 1.Putative biosynthetic pathway of PUFAs in Mortierella alpina 1S-4. OA, oleic acid; LA, linoleic acid; ALA, α-linolenic acid; GLA, γ-linolenic acid; SDA, stearidonic acid; EDA, n-9 eicosadienoic acid; DGLA, dihomo-γ-linolenic acid; ETA, n-3 eicosatetraenoic acid; MA, Mead acid. Open and black arrows indicate elongase and desaturase reactions, respectively.Agrobacterium tumefaciens-mediated transformation (ATMT) has been employed for a wide range of plants (7, 27). Recently, it was reported that A. tumefaciens is also able to transfer its DNA to various fungi, including ascomycetes, basidiomycetes, zygomycetes, and oomycetes, as well as to plants (2, 5, 16). Additionally, this bacterium can transform intact cells and spores as well as protoplasts. Under mild conditions, the ATMT system generates a large number of stable transformants, which show vigorous growth, indicating that the ATMT system can be an efficient tool for molecular manipulation of M. alpina 1S-4. Moreover, the frequency of homologous recombination was higher than that with conventional transformation methods (8). In this study, we evaluated the external gene transfer system using the ATMT system and determined the optimal conditions for M. alpina 1S-4. Furthermore, we overexpressed the ω3-desaturase gene to improve n-3 PUFA productivity in an industrial n-6-PUFA-producing strain, M. alpina 1S-4 (18, 20), using ATMT.  相似文献   

8.
李俊  曹珺  唐鑫  张灏  陈卫  陈海琴 《微生物学通报》2021,48(12):4600-4611
[背景] 高山被孢霉(Mortierella alpina)是一种可积累大量花生四烯酸(Arachidonic Acid,AA)的产油丝状真菌,其所产脂肪酸主要被组装到甘油骨架上以三酰甘油(Triacylglycerol,TAG)形式存在。二酰甘油酰基转移酶(Diacylglycerol Acyltransferase,DGAT)是TAG生物合成途径的关键酶,对于高山被孢霉TAG的生产具有重要意义。[目的] 通过探究高山被孢霉DGAT2在TAG生物合成方面的功能特点,以期为提高产油真菌的TAG产量及改善TAG的脂肪酸组成提供参考。[方法] 利用序列比对在高山被孢霉ATCC32222基因组中筛选出2个编码DGAT2的候选基因MaDGAT2A/2B,在酿酒酵母(Saccharomyces cerevisiae)中异源表达后进行功能分析,并在外源添加AA条件下通过检测TAG产量进一步分析MaDGAT2A/2B的活性,最后在高山被孢霉中同源过表达MaDGAT2A/2B,通过检测重组菌总脂肪酸产量及组分以分析MaDGAT2A/2B的体内活性。[结果] MaDGAT2AS. cerevisiae中异源表达时,重组酵母菌TAG的产量达到细胞干重的3.06%,为对照组的4.91倍;而MaDGAT2B未明显提高重组酵母菌TAG的产量。在外源添加AA时,MaDGAT2A/2B均可显著促进重组酵母菌中TAG合成,表达MaDGAT2A的重组酵母菌TAG含量为对照组的3.67倍,表达MaDGAT2B的重组酵母菌TAG含量为对照组的2.61倍。MaDGAT2A/2B在高山被孢霉中过表达对其总脂肪酸产量无显著影响,但可显著提高总脂肪酸中AA的含量,AA占总脂肪酸比例最高达到39.15%,相比对照组提高16.14%。[结论] MaDGAT2A/2B可以参与TAG的生物合成,表明2个候选基因编码的蛋白具有DGAT活性,并且可提高高山被孢霉脂肪酸中AA的含量,对于改善产油真菌的脂肪酸组成从而提高其应用价值具有重要意义。  相似文献   

9.
Summary Various Mortierella fungi were assayed for their productivity of arachidonic acid (ARA). Only strains belonging to the subgenus Mortierella accumulated detectable amounts of ARA together with dihomo--linolenic acid. None of the strains belonging to the subgenus Micromucor tested accumulated these C-20 fatty acids, although they produced a C-18 fatty acid, -linolenic enic acid. A soil isolate, M. alpina 1S-4, was found to grow well in a liquid medium containing glucose and yeast extract as carbon and nitrogen sources, respectively. Addition of several natural oils such as olive and soybean oils to the medium increased the accumulation of ARA. Under optimal culture conditions in a 5-1 bench-scale fermentor, the fungus produced 3.6 g/l of ARA in 7 days. On cultivation for 10 days at 28°C in a 2000-1 fermentor, the same fungus produced 22.5 kg/kl mycelia (dry weight) containing 9.9 kg lipids, in which ARA comprised 31.0% of the total fatty acids. On standing the harvested mycelia for a further 6 days, major mycelial fatty acids (i.e. palmitic acid, oleic acid, linoleic acid, etc.) other than ARA rapidly decomposed and the ARA content of the total fatty acids reached nearly 70%.  相似文献   

10.
Malonyl-CoA is an essential precursor for fatty acid biosynthesis that is generated from the carboxylation of acetyl-CoA. In this work, a gene coding for acetyl-CoA carboxylase (ACC) was isolated from an oleaginous fungus, Mucor rouxii. According to the amino acid sequence homology and the conserved structural organization of the biotin carboxylase, biotin carboxyl carrier protein, and carboxyl transferase domains, the cloned gene was characterized as a multi-domain ACC1 protein. Interestingly, a 40% increase in the total fatty acid content of the non-oleaginous yeast Hansenula polymorpha was achieved by overexpressing the M. rouxii ACC1. This result demonstrated a significant improvement in the production of fatty acids through genetic modification in this yeast strain.  相似文献   

11.
Molecular cloning of the gene encoding sterol Δ7 reductase from the filamentous fungus Mortierella alpina 1S-4, which accumulates cholesta-5,24-dienol (desmosterol) as the main sterol, revealed that the open reading frame of this gene, designated MoΔ7SR, consists of 1,404 bp and codes for 468 amino acids with a molecular weight of 53,965. The predicted amino acid sequence of MoΔ7SR showed highest homology of 51% with that of sterol Δ7 reductase (EC 1.3.1.21) from Xenopus laevis (African clawed frog). Heterologous expression of the MoΔ7SR gene in yeast Saccharomyces cerevisiae revealed that MoΔ7SR converts ergosta-5,7-dienol to ergosta-5-enol (campesterol) by the activity of Δ7 reductase. In addition, with gene silencing of MoΔ7SR gene by RNA interference, the transformant accumulated cholesta-5,7,24-trienol up to 10% of the total sterols with a decrease in desmosterol. Cholesta-5,7,24-trienol is not detected in the control strain. This indicates that MoΔ7SR is involved in desmosterol biosynthesis in M. alpina 1S-4. This study is the first report on characterization of sterol Δ7 reductase from a microorganism.  相似文献   

12.
Thraustochytrids, unicellular eukaryotic marine protists, accumulate polyunsaturated fatty acids. Here, we report the molecular cloning and functional characterization of two fatty acid elongase genes (designated tselo1 and tselo2), which could be involved in the desaturase/elongase (standard) pathway in Thraustochytrium sp. ATCC 26185. TsELO1, the product of tselo1 and classified into a Δ6 elongase group by phylogenetic analysis, showed strong C18-Δ6 elongase activity and relatively weak C18-Δ9 and C20-Δ5 activities when expressed in the budding yeast Saccharomyces cerevisiae. TsELO2, classified into a Δ9 elongase subgroup, showed only C16-Δ9 activity. When expressed in Aurantiochytrium limacinum mh0186 using a thraustochytrid-derived promoter and a terminator, TsELO1 exhibited almost the same specificity as expressed in the yeast but TsELO2 showed weak C18-Δ9 activity, in addition to its main C16-Δ9 activity. These results suggest that TsELO1 functions not only as a C18-Δ6 and a C20-Δ5 elongase in the main route but also as a C18-Δ9 elongase in the alternative route of standard pathway, while TsELO2 functions mainly as a C16-Δ9 elongase generating vaccenic acid (C18:1n?7) in thraustochytrids. This is the first report describing a fatty acid elongase harboring C16-Δ9 activity in thraustochytrids.  相似文献   

13.
Oligounsaturated fatty acid production by selected strains of micromycetes   总被引:2,自引:0,他引:2  
Fifteen strains of filamentous fungi from theCulture Collection of Fungi (Charles University, Prague) were tested for their lipid production, fatty acid composition with emphasis on accumulation of oligounsaturated fatty acids. All cultures contained palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2) and γ-linolenic (18:3) acid (GLA). The mycelium ofCunninghamella elegans, Rhizopus arrhizus, Mortierella parvispora, M. elongata andM. alpina contained arachidonic acid (ARA) in the range of 2.3–33.5% of the total fatty acids. The strains used in our experiment were capable to accumulate a relatively high amount of intracellular lipid (9.6–20.1% in dry biomass). The highest content of GLA (22.3 mg/g) was found inMucor circinelloides. The strain ofM. alpina containing 47.1 mg/g of ARA could be considered as the best producer of ARA.  相似文献   

14.
Thioesterases (TEs) play an essential role in the metabolism of fatty acids (FAs). To explore the role of TEs in mediating intracellular lipid metabolism in the oleaginous fungus Mortierella alpina, the acyl-CoA thioesterase ACOT8I was overexpressed. The contents of total fatty acids (TFAs) were the same in the recombinant strains as in the wild-type M. alpina, whilst the production of free fatty acids (FFAs) was enhanced from about 0.9% (wild-type) to 2.8% (recombinant), a roughly threefold increase. Linoleic acid content in FFA form constituted about 9% of the TFAs in the FFA fraction in the recombinant strains but only about 1.3% in the wild-type M. alpina. The gamma-linolenic acid and arachidonic acid contents in FFA form accounted for about 4 and 25%, respectively, of the TFAs in the FFA fraction in the recombinant strains, whilst neither of them in FFA form were detected in the wild-type M. alpina. Overexpression of the TE ACOT8I in the oleaginous fungus M. alpina reinforced the flux from acyl-CoAs to FFAs, improved the production of FFAs and tailored the FA profiles of the lipid species.  相似文献   

15.
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.  相似文献   

16.
When the cells of Saccharomyces cerevisiae are exposed to high concentration of ethanol, the content of oleic acid (C18:1n-9) increased as the initial concentration of ethanol increased. Based on this observation, we attempted to confer ethanol tolerance to S. cerevisiae by manipulating fatty acid composition of the cells. Rather than altering OLE1 expression [the desaturase making both C16:1n-7 (palmitoleic acid) and C18:1n-9], we introduced elongase genes. Introduction of rat elongase 1 gene (rELO1) into S. cerevisiae gave cis-vaccenic acid (cis-C18:1n-7) by conversion from C16:1n-7, and the increase in this C18:1 fatty acid did not confer ethanol tolerance to the cells. On the other hand, the introduction of rat elongase 2 gene (rELO2), which elongates C16:0 to C18:0, drastically increased C18:1n-9 content, and the cells acquired ethanol tolerance, emphasizing the specific role of C18:1n-9. Furthermore, the transformant of rELO2 also conferred tolerance to n-butanol, n-propanol, and 2-propanol.  相似文献   

17.
Based on the sequence information for bovine and yeast NADH-cytochrome b5 reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding β-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5′ end and AG at the 3′ end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi.  相似文献   

18.
An arachidonic-producing fungus, Mortierella alpina 1S-4, was found to accumulate -unsaturated fatty acids of C-20 chain length together with 1-hexadecenoic acid, 1-octadecenoic acid and so on, when grown on 1-alkenes, i.e., 1-hexadecene and 1-octadecene. The results of mass spectroscopy and proton NMR showed that a C20 polyunsaturated fatty acid (PUFA) is a novel cis-5,8,11,14,19-eicosapentaenoic acid (20:51). This PUFA was obtained at a yield of 0.13 mg/ml culture broth (2.8% of the fungal total fatty acid content) on cultivation of the fungus in a medium containing 4% (v/v) 1-hexadecene and 1% yeast extract at 28°C for 1 week. Investigation of the distribution of fatty acids showed that about 90% (by mol.) of the PUFA was present in the triglycerides and 10% was in the phospholipid fraction. About 70% of that found in the phospholipids was phosphatidylcholine (PC) and the value accounted for ca. 10% of the total fatty acid content. The formation of these -unsaturated fatty acids was presumed to occur through the arachidonic acid biosynthetic pathway (n-6 route).Abbreviations PUFA polyunsaturated fatty acid - EPA cis-5,8,11,14,17-eicosapentaenoic acid - TG triglycerides - PS phosphatidylserine - PC phosphatidylcholine Present address: Laboratory of Microbial Science, Institute for Fundamental Research, Suntory Ltd., Mishima-gun, Osaka 618, Japan  相似文献   

19.
Mortierella alpina is an oleaginous filamentous fungus whose vegetative mycelium is known to accumulate triglyceride oil containing large amounts of arachidonic acid (ARA 20:4, n − 6). We report that the spores of Mortierella alpina also contain a large proportion of ARA, comprising 50% of total fatty acid. Fatty acid desaturase genes were not expressed in dormant spores but were induced during germination, following a significant drop in the level of ARA (down from 50% of total fatty acid to 12%) prior to germ-tube emergence. We propose that ARA serves as a reserve supply of carbon and energy that is utilised during the early stages of spore germination in Mortierella alpina.  相似文献   

20.
Fish are the only major dietary source for humans of -3 highly unsaturated fatty acids (HUFAs) and with declining fisheries farmed fish such as Atlantic salmon (Salmo salar) constitute an increasing proportion of the fish in the human diet. However, the current high use of fish oils, derived from wild capture marine fisheries, in aquaculture feeds is not sustainable in the longer term and will constrain continuing growth of aquaculture activities. Greater understanding of how fish metabolize and biosynthesize HUFA may lead to more sustainable aquaculture diets. The study described here contributes to an effort to determine the molecular genetics of the HUFA biosynthetic pathway in salmon, with the overall aim being to determine mechanisms for optimizing the use of vegetable oils in Atlantic salmon culture. In this paper we describe the cloning and functional characterization of 2 genes from salmon involved in the biosynthesis of HUFA. A salmon desaturase complementary DNA, SalDes, was isolated that include an open reading frame of 1362 bp specifying a protein of 454 amino acids. The protein sequence includes all the characteristics of microsomal fatty acid desaturases, including 3 histidine boxes, 2 transmembrane regions, and an N-terminal cytochrome b5 domain containing a heme-binding motif similar to that of other fatty acid desaturases. Functional expression in the yeast Saccharomyces cerevisiae showed SalDes is predominantly an -3 5 desaturase, a key enzyme in the synthesis of eicosapentaenoic acid (20:5n-3) from -linolenic acid (18:3n-3). The desaturase showed only low levels of 6 activity toward C18 polyunsaturated fatty acids. In addition, a fatty acid elongase cDNA, SalElo, was isolated that included an open reading frame of 888 bp, specifying a protein of 295 amino acids. The protein sequence of SalElo included characteristics of microsomal fatty acid elongases, including a histidine box and a transmembrane region. Upon expression in yeast SalElo showed broad substrate specificity for polyunsaturated fatty acids with a range of chain lengths, with the rank order being C18 > C20 > C22. Thus this one polypeptide product displays all fatty acid elongase activities required for the biosynthesis of docosahexaenoic acid (22:6n-3) from 18:3n-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号