首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Neurotrophins are a family of proteins with pleiotropic effects mediated by two distinct receptor types, namely the Trk family, and the common neurotrophin receptor p75NTR. Binding of four mammalian neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), to p75NTR is studied by molecular modeling based on X-ray structures of the neurotrophins and the extracellular domain of p55TNFR, a homologue of p75NTR. The model of neurotrophin/receptor interactions suggests that the receptor binding domains of neurotrophins (loops I and IV) are geometrically and electrostatically complementary to a putative binding site of p75NTR, formed by the second and part of the third cysteine-rich domains. Geometric match of neurotrophin/receptor binding domains in the complexes, as characterized by shape complementarity statistic Sc, is comparable to known protein/protein complexes. All charged residues within the loops I and IV of the neurotrophins, previously determined as being critical for p75NTR binding, directly participate in receptor binding in the framework of the model. Principal residues of the binding site of p75NTR include Asp47, Lys56, Asp75, Asp76, Asp88, and Glu89. The additional involvement of Arg80 and Glu53 is specific for NGF and BDNF, respectively, and Glu73 participates in binding with NT-3 and NT-4/5. Neurotrophins are likely to induce similar, but not identical, conformational changes within the p75NTR binding site.  相似文献   

2.
Neurotrophin signaling via Trks and p75   总被引:24,自引:0,他引:24  
This review focuses on recent advances in our understanding of receptor-mediated signaling by the neurotrophins NGF, BDNF, NT3, and NT4/5. Two distinct receptor types have been distinguished, Trks and p75. The Trks are receptor tyrosine kinases that utilize a complex set of substrates and adapter proteins to activate defined secondary signaling cascades required for neurotrophin-promoted neuronal differentiation, plasticity, and survival. A specialized aspect of Trk/neurotrophin action in neurons is the requirement for retrograde signaling from the distal periphery to the cell body. p75 is a universal receptor for neurotrophins that is a member of the TNF receptor/Fas/CD40 superfamily. p75 appears to modify Trk signaling when the two receptor types are coexpressed. When expressed in the absence of Trks, p75 mediates responses to neurotrophins including promotion of apoptotic death. The mechanisms of p75 receptor signaling remain to be fully understood.  相似文献   

3.
Target-derived neurotrophins regulate neuronal survival and growth by interacting with cell-surface tyrosine kinase receptors. The p75 neurotrophin receptor (p75 NTR) is coexpressed with Trk receptors in long-range projection neurons, in which it facilitates neurotrophin binding to Trk and enhances Trk activity. Here, we show that TrkA and TrkB receptors undergo robust ligand-dependent ubiquitination that is dependent on activation of the endogenous Trk activity of the receptors. Coexpression of p75 NTR attenuated ubiquitination of TrkA and TrkB and delayed nerve growth factor-induced TrkA receptor internalization and receptor degradation. These results indicate that p75 NTR may prolong cell-surface Trk-dependent signalling events by negatively regulating receptor ubiquitination.  相似文献   

4.
Neurotrophins are a small family of dimeric secretory proteins in vertebrate neurons with a broad spectrum of functions. They are generated as pro-proteins with a functionality that is distinct from the proteolytically processed form. The cellular responses of neurotrophins are mediated by three different types of receptor proteins, the receptor tyrosine kinases of the Trk family, the neurotrophin receptor p75(NTR), which is a member of the tumor necrosis factor receptor (TNFR) superfamily, and sortilin, previously characterized as neurotensin receptor. Recent studies have revealed an intriguing pattern: neurotrophins can elicit opposing signals utilising their variable configuration and different receptor types.  相似文献   

5.
The yin and yang of neurotrophin action   总被引:13,自引:0,他引:13  
Neurotrophins have diverse functions in the CNS. Initially synthesized as precursors (proneurotrophins), they are cleaved to produce mature proteins, which promote neuronal survival and enhance synaptic plasticity by activating Trk receptor tyrosine kinases. Recent studies indicate that proneurotrophins serve as signalling molecules by interacting with the p75 neurotrophin receptor (p75NTR). Interestingly, proneurotrophins often have biological effects that oppose those of mature neurotrophins. Therefore, the proteolytic cleavage of proneurotrophins represents a mechanism that controls the direction of action of neurotrophins. New insights into the 'yin and yang' of neurotrophin activity have profound implications for our understanding of the role of neurotrophins in a wide range of cellular processes.  相似文献   

6.
Myelin inhibitors activate a p75(NTR)-dependent signaling cascade in neurons that not only inhibits axonal growth but also prevents neurotrophins (NT) from stimulating growth. Most intriguingly, in addition to Trk receptors, neurotrophins also bind to p75(NTR). We have designed a "mini-neurotrophin" called B(AG) to activate TrkB in the absence of p75(NTR) binding. We find that B(AG) is as effective as the natural TrkB ligands (brain-derived neurotrophic factor (BDNF) and NT-4) at promoting neurite outgrowth from cerebellar neurons. Furthermore, the neurite outgrowth responses stimulated by BDNF and B(AG) are inhibited by a common set of reagents, including the Trk receptor inhibitor K252a, as well as protein kinase A and phosphoinositide 3-kinase inhibitors. However, in contrast to BDNF, B(AG) promotes growth in the presence of a myelin inhibitor or when antibodies directly activate the p75(NTR) inhibitory pathway. On the basis of this observation, we postulated that the binding of BDNF to the p75(NTR) might compromise the ability of BDNF to stimulate neurite outgrowth in an inhibitory environment. To test this, we used NGF, and an NGF-derived peptide, to compete for the BDNF/p75(NTR) interaction; remarkably, in the presence of either agent, BDNF acquired the ability to promote neurite outgrowth in the presence of a myelin inhibitor. The data suggest that in an inhibitory environment, the BDNF/p75(NTR) interaction compromises regeneration. Agents that activate Trk receptors in the absence of p75(NTR) binding, or agents that inhibit neurotrophin/p75(NTR) binding, might therefore be better therapeutic candidates than neurotrophins.  相似文献   

7.
The common neurotrophin receptor p75(NTR) remains one of the most enigmatic of the tumor necrosis factor receptor (TNFR) superfamily: on the one hand, it displays a death domain and has been shown to be capable of mediating programmed cell death (PCD) upon ligand binding; on the other hand, its death domain is of type II (unlike that of Fas or TNFR I), and it has also been shown to be capable of mediating cell death in response to the withdrawal of ligand. Thus, p75(NTR) may function as a death receptor-similar to Fas or TNFR I-or a dependence receptor-similar to deleted in colorectal cancer (DCC) or uncoordinated gene-5 homologues 1-3 (UNC5H1-3). Here, we review the data relating to the mediation of PCD by p75(NTR), and suggest that one reasonable model for the apparently paradoxical effects of p75(NTR) is that this receptor functions as a "quality control" in that it is capable of mediating PCD in at least four situations: (1). withdrawal of neurotrophins; (2). exposure to mismatched neurotrophins; (3). exposure to unprocessed neurotrophins; and (4). exposure of inappropriately immature cells to neurotrophins. Results to date suggest that these functions are mediated through different underlying mechanisms, and that their respective signaling pathways are cell type and co-receptor dependent.  相似文献   

8.
Although traditionally little attention has been paid to the interplay between neurotrophins and the cell cycle, a number of recent findings suggest an important role for these growth factors in the regulation of this aspect of the cellular physiology. In this article, we review the evidence from a number of studies that neurotrophins can influence cell cycle progression or mitotic cycle arrest both in the nervous system as well as in other cell types. The contrary response of different cells to neurotrophins in terms of cell cycle regulation derives in part from the fact that these factors use two different receptor types to transmit their signals: members of the Trk family and the p75 neurotrophin receptor (p75NTR). With this in mind, we outline the current state of our knowledge regarding the molecular basis underlying the control of cell cycle progression by neurotrophins. We focus our interest on the receptors that transduce these signals and, in particular, the striking finding that p75NTR interacts with proteins that can promote mitotic cycle arrest. Finally, we discuss the mechanisms of cell death mediated by p75NTR in the context of cell cycle regulation.  相似文献   

9.
Molecular interactions between neurotrophin receptors   总被引:6,自引:0,他引:6  
Neurotrophins signal via a dual-receptor system comprising receptor tyrosine kinases, the Trks, and a tumor necrosis factor (TNF) receptor like molecule, p75. Interest in these receptors was spurred on by the finding that they are employed by their neurotrophin ligands to activate opposing cellular mechanisms. Signalling via Trk receptors promotes the survival of embryonic neurons, whereas activation of p75 can trigger apoptosis. However, this antagonistic view is an oversimplification. It is more accurate to refer to this system as a signalling network in which ligands, receptors and their intracellular target proteins are linked by balanced biochemical interactions. This article reviews recent advances in our understanding of these molecular mechanisms which critically determine many cell-type-specific responses to neurotrophins. Emphasis is given to the formation of receptor complexes, the generation of receptor diversity by alternative splicing and the influence exerted by the local membrane environment on neurotrophin signalling.  相似文献   

10.
Neurotrophins mediate their signals through two different receptors: the family of receptor tyrosine kinases, Trks, and the low affinity pan-neurotrophin receptor p75. Trk receptors show more restricted ligand specificity, whereas all neurotrophins are able to bind to p75. One important function of p75 is the enhancement of nerve growth factor signaling via TrkA by increasing TrkA tyrosine autophosphorylation. Here, we have examined the importance of p75 on TrkB- and TrkC-mediated neurotrophin signaling in an MG87 fibroblast cell line stably transfected with either p75 and TrkB or p75 and TrkC, as well as in PC12 cells stably transfected with TrkB. In contrast to TrkA signaling, p75 had a negative effect on TrkB tyrosine autophosphorylation in response to its cognate neurotrophins, brain-derived neurotrophic factor and neurotrophin 4/5. On the other hand, p75 had no effect on TrkB or TrkC activation in neurotrophin 3 treatment. p75 did not effect extracellular signal-regulated kinase 2 tyrosine phosphorylation in response to brain-derived neurotrophic factor, neurotrophin 3, or neurotrophin 4/5. These results suggest that the observed reduction in TrkB tyrosine autophosphorylation caused by p75 does not influence Ras/mitogen-activated protein kinase signaling pathway in neurotrophin treatments.  相似文献   

11.
The study of structure–function relationships in the neurotrophin family has in recent years increased our understanding of several important aspects of neurotrophin function. Site-directed mutagenesis studies have localized amino acid residues important for binding to the low-affinity (p75LNGFR), as well as to the members of the Trk family of tyrosine kinase receptors. A cluster of positively charged residues has been shown to form a surface for binding to p75LNGFR in all four neurotrophins. Differences in the spatial distribution of these charges among the different neurotrophins may explain some of their distinct binding properties. Elimination of these positive charges drastically reduces binding to P75LNGFR but not to the Trk family members, and it does not impair the biological properties of the neurotrophins in vitro, arguing that binding to and activation of Trk receptors is sufficient to mediate the biological responses of neurotrophins. In contrast. the binding sites to Trk receptors appear to be formed by discontinuous stretches of amino acid residues distributed throughout the primary sequence of the molecule. These include the N-terminus, some of the variable loop regions and a β-strand. Despite their apparent distribution, when viewed in the three-dimensional structure of NGF, these residues appear grouped on one side of the neurotrophin dimer, delineating a continuous surface extending approximately parallel to the twofold symmetry axis of the molecule. Two symmetrical surfaces are formed along the axis of the neurotrophin dimer providing a model for ligand-mediated receptor dimerization. In the neurotrophin family, co-evolution of cognate ligands and Trk receptors has developed specific contacts through different residues in the same variable regions of the neurotrophins. Thus, binding specificity is determined by the cooperation of distinct active and inhibitory binding determinants that restrict ligand-receptors interactions. Binding determinants to the Trk receptors can be manipulated independently in a rational fashion to create neurotrophin analogues with novel ligand-binding properties. In this way, second-generation chimeric neurotrophins with multiple specificities (pan-neurotrophins) have been engineered which may have valuable applications in the treatment of neurodegeneration and nerve damage. 1994 John Wiley & Sons, Inc.  相似文献   

12.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

13.
Neurotrophin-regulated signalling pathways   总被引:15,自引:0,他引:15  
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.  相似文献   

14.
Accumulating evidence has indicated that neurotrophin receptor trafficking plays an important role in neurotrophin-mediated signaling in developing as well as mature neurons. However, little is known about the molecular mechanisms and the components of neurotrophin receptor vesicular transport. This article will describe how neurotrophin receptors, Trk and p75 neurotrophin receptor (p75NTR), are intimately involved in the axonal transport process. In particular, the molecules that may direct Trk receptor trafficking in the axon will be discussed. Finally, potential mechanisms by which receptor-containing vesicles link to molecular cytoskeletal motors will be presented.  相似文献   

15.
The common neurotrophin receptor, p75(NTR), has been shown to signal in the absence of Trk tyrosine kinase receptors, including induction of neural apoptosis and activation of NF-kappaB. However, the mechanisms by which p75(NTR) initiates these intracellular signal transduction pathways are unknown. Here we report interactions between p75(NTR) and the six members of TRAF (tumor necrosis factor receptor-associated factors) family proteins. The binding of different TRAF proteins to p75(NTR) was mapped to distinct regions in p75(NTR). Furthermore, TRAF4 interacted with dimeric p75(NTR), whereas TRAF2 interacted preferentially with monomeric p75(NTR). TRAF2-p75(NTR), TRAF4-p75(NTR), and TRAF6-p75(NTR) interactions modulated p75(NTR)-induced cell death and NF-kappaB activation with contrasting effects. Coexpression of TRAF2 with p75(NTR) enhanced cell death, whereas coexpression of TRAF6 was cytoprotective. Furthermore, overexpression of TRAF4 abrogated the ability of dimerization to prevent the induction of apoptosis normally mediated by monomeric p75(NTR). TRAF4 also inhibited the NF-kappaB response, whereas TRAF2 and TRAF6 enhanced p75(NTR)-induced NF-kappaB activation. These results demonstrate that TRAF family proteins interact with p75(NTR) and differentially modulate its NF-kappaB activation and cell death induction.  相似文献   

16.

Background

In chordates, retinoid metabolism is an important target of short-chain dehydrogenases/reductases (SDRs). It is not known whether SDRs play a role in retinoid metabolism of protostomes, such as Drosophila melanogaster.

Methods

Drosophila genome was searched for genes encoding proteins with ∼ 50% identity to human retinol dehydrogenase 12 (RDH12). The corresponding proteins were expressed in Sf9 cells and biochemically characterized. Their phylogenetic relationships were analyzed using PHYLIP software.

Results

A total of six Drosophila SDR genes were identified. Five of these genes are clustered on chromosome 2 and one is located on chromosome X. The deduced proteins are 300 to 406 amino acids long and are associated with microsomal membranes. They recognize all-trans-retinaldehyde and all-trans-3-hydroxyretinaldehyde as substrates and prefer NADPH as a cofactor. Phylogenetically, Drosophila SDRs belong to the same branch of the SDR superfamily as human RDH12, indicating a common ancestry early in bilaterian evolution, before a protostome–deuterostome split.

Conclusions

Similarities in the substrate and cofactor specificities of Drosophila versus human SDRs suggest conservation of their function in retinoid metabolism throughout protostome and deuterostome phyla.

General significance

The discovery of Drosophila retinaldehyde reductases sheds new light on the conversion of β-carotene and zeaxantine to visual pigment and provides a better understanding of the evolutionary roots of retinoid-active SDRs.  相似文献   

17.
The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named "Chopper" to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and non-neural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.  相似文献   

18.
p75NTR: A study in contrasts   总被引:5,自引:0,他引:5  
The p75 neurotrophin receptor (p75NTR) and trkA, trkB and trkC mediate the physiological effects of the neurotrophins. The trk receptors are responsible for the stereotypical survival and growth properties of the neurotrophins but defining the physiological function of the p75NTR has proven difficult. The p75NTR binds each of the neurotrophins with low nanomolar affinity whereas the three trk receptors show strong binding preferences for individual neurotrophins; in some cell types, p75NTR is the only neurotrophin receptor whereas in others it is co-expressed with the trks. The analysis of p75NTR function has been complicated by the fact that the predominant physiological role of p75NTR changes dramatically depending on cell context. Available data suggests that in cells where p75NTR is co-expressed with trk receptors, p75NTR functionally collaborates with the trks to either enhance responses to preferred trk ligands, to reduce neurotrophin-mediated trk receptor activation resulting from non-preferred ligands or to facilitate apoptosis resulting from neurotrophin withdrawal. In cells lacking trk expression, p75NTR can act autonomously to activate ligand-dependent signaling cascades that may in some circumstances result in apoptosis but probably not through pathways utilized by its apoptotic brethren in the TNF receptor superfamily. Potential mechanisms for each of these functions of p75NTR are considered and the physiological implications of this unique signaling system are discussed.  相似文献   

19.
Retrograde neurotrophin signaling: Trk-ing along the axon   总被引:14,自引:0,他引:14  
Target-derived neurotrophins are required for the growth and survival of innervating neurons. When released by postsynaptic targets, neurotrophins bind receptors (Trks) on nerve terminals. Activated Trks signal locally within distal axons and retrogradely through long axons to distant cell bodies in order to promote gene expression and survival. Although the mechanism of retrograde neurotrophin signaling is not fully elucidated, considerable evidence supports a model in which the vesicular transport of neurotrophin-Trk complexes transmits a survival signal that involves PI3K and Erk5. Other, non-vesicular modes of retrograde signaling are likely to function in parallel. Recent studies highlight the importance of the location of stimulation as a determinant of Trk signaling. Defects in signaling from distal axons to cell bodies may be causally related to neurodegenerative disorders.  相似文献   

20.

Background

Although p75 neurotrophin receptor (p75NTR) is the first neurotrophin receptor isolated, its diverse physiological functions and signaling have remained elusive for many years. Loss-of-function phenotypic analyses for p75NTR were mainly focused at the genetic level; however these approaches were impacted by off-target effect, insufficient stability, unspecific stress response or alternative active splicing products. In this study, p75NTR surface expression was suppressed for the first time at the protein level by endoplasmic reticulum (ER) retained intrabodies.

Results

Three monoclonal recombinant antibody fragments (scFv) with affinities in the low nanomolar range to murine p75NTR were isolated by antibody phage display. To suppress p75NTR cell surface expression, the encoding genes of these scFvs extended by the ER retention peptide KDEL were transiently transfected into the neuron-like rat pheochromocytoma cell line PC12 and the mouse neuroblastoma x mouse spinal cord hybrid cell line NSC19. The ER retained intrabody construct, SH325-G7-KDEL, mediated a downregulation of p75NTR cell surface expression as shown by flow cytometry. This effect was maintained over a period of at least eight days without activating an unfolded protein response (UPR). Moreover, the ER retention of p75NTR resulted in downregulation of mRNA levels of the anti-apoptotic protein Bcl-xL as well as in strong inhibition of NGF-induced neurite outgrowth in PC12 cells.

Conclusion

The ER retained intrabody SH325-G7-KDEL not only induces phenotypic knockdown of this p75NTR but also p75NTR-associated cellular responses in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号