首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3,4,5-Tri-O-acetyl-2-[18F]fluoro-2-deoxy-d-glucopyranosyl 1-phenylthiosulfonate (Ac3-[18F]FGlc-PTS) was developed as a thiol-reactive labeling reagent for the site-specific 18F-glycosylation of peptides. Taking advantage of highly accessible 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranose, a three-step radiochemical pathway was investigated and optimized, providing Ac3-[18F]FGlc-PTS in a radiochemical yield of about 33% in 90 min (decay-corrected and based on starting [18F]fluoride). Ac3-[18F]FGlc-PTS was reacted with the model pentapeptide CAKAY, confirming chemoselectivity and excellent conjugation yields of >90% under mild reaction conditions. The optimized method was adopted to the 18F-glycosylation of the alphavbeta3-affine peptide c(RGDfC), achieving high conjugation yields (95%, decay-corrected). The alphavbeta3 binding affinity of the glycosylated c(RGDfC) remained uninfluenced as determined by competition binding studies versus 125I-echistatin using both isolated alphavbeta3 and human umbilical vein endothelial cells (Ki = 68 +/- 10 nM (alphavbeta3) versus Ki = 77 +/- 4 nM (HUVEC)). The whole radiosynthetic procedure, including the preparation of the 18F-glycosylating reagent Ac3-[18F]FGlc-PTS, peptide ligation, and final HPLC purification, provided a decay-uncorrected radiochemical yield of 13% after a total synthesis time of 130 min. Ac3-[18F]FGlc-PTS represents a novel 18F-labeling reagent for the mild chemoselective 18F-glycosylation of peptides indicating its potential for the design and development of 18F-labeled bioactive S-glycopeptides suitable to study their pharmacokinetics in vivo by positron emission tomography (PET).  相似文献   

2.
A new synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine [18F]FET was developed using a NanoTek® microfluidic synthesis system (Advion BioSciences, Inc.). Optimal reaction conditions were studied through screening different reaction parameters like temperature, flow rate, reaction time, concentration of the labeling precursor, and the applied volume ratio between the labeling precursor and [18F]fluoride. [18F]FET was obtained after HPLC purification with 50% decay-corrected radiochemical yield starting from as little as 40 μg of labeling precursor. Small animal PET studies in EMT-6 tumor bearing mice showed radioactivity accumulation in the tumor (SUV60min 1.21 ± 0.2) resulting in an slightly increasing tumor-to-muscle ratio over time.  相似文献   

3.
Galactosylated chitosan (GC) was prepared by reacting lactobionic acid with water-soluble chitosan. GC was labeled with fluorine-18 by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. After rapid purification with HiTrap desalting column, [18F]FB-GC was obtained with high radiochemical purity (>97%) determined by radio-HPLC. The total reaction time for [18F]FB-GC was about 150 min. Typical decay-corrected radiochemical yield was about 4–8%. Ex vivo biodistribution in normal mice showed that [18F]FB-GC had moderate activity accumulation in liver with very good retention (11.13 ± 1.63, 10.97 ± 1.90 and 10.77 ± 0.95% ID/g at 10, 60, 120 min after injection, respectively). The other tissues except kidney showed relative low radioactivity accumulation. The high liver/background ratio affords promising biological properties to get clear images. The specific binding of this radiotracer to the ASGP receptor was confirmed by blocking experiment in mice. Compared with the non-blocking group the hepatic uptake of [18F]FB-GC significantly declined in all selected time points. The better liver retention properties of [18F]FB-GC than that of albumin based imaging agents may improve imaging quality and simplify pharmacokinetic model of liver function in the future application with PET imaging.  相似文献   

4.
Cu(I)-mediated [3+2]cycloaddition between azides and alkynes has evolved into a valuable bioconjugation tool in radiopharmaceutical chemistry. We have developed a simple, convenient and reliable radiosynthesis of 4-[18F]fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([ 18 F]F-SA) as a novel aromatic sulfonamide-based click chemistry building block. [ 18 F]F-SA could be prepared in a remotely controlled synthesis unit in 32 ± 5 % decay-corrected radiochemical yield in a total synthesis time of 80 min. The determined lipophilicity of [ 18 F]F-SA (logP = 1.7) allows handling of the radiotracer in aqueous solutions. The versatility of [ 18 F]F-SA as click chemistry building block was demonstrated by the labeling of a model peptide (phosphopeptide), protein (HSA), and oligonucleotide (L-RNA). The obtained radiochemical yields were 77 % (phosphopeptide), 55–60 % (HSA), and 25 % (L-RNA), respectively. Despite the recent emergence of a multitude of highly innovative novel bioconjugation methods for 18F labeling of biopolymers, Cu(I)-mediated click chemistry with [ 18 F]F-SA represents a reliable, robust and efficient radiolabeling technique for peptides, proteins, and oligonucleotides with the short-lived positron emitter 18F.  相似文献   

5.
This protocol describes the step-by-step procedure for the synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), an agent widely used for labeling proteins and peptides with the positron-emitting radionuclide 18F. The protocols for the synthesis of unlabeled SFB and the quaternary salt precursor 4-formyl-N,N,N-trimethyl benzenaminium trifluoromethane sulfonate also are described. For the [18F]SFB synthesis, the quaternary salt is first converted to 4-[18F]fluorobenzaldehyde. Oxidation of the latter provides 4-[18F]fluorobenzoic acid, which is converted to [18F]SFB by treatment with N,N-disuccinimidyl carbonate. Using this method, [18F]SFB can be synthesized in decay-corrected radiochemical yields of 30%-35% and a specific radioactivity of 11-12 GBq micromol(-1). The total synthesis and purification time required is about 80 min, starting from delivery of the [18F]fluoride. [18F]SFB remains an optimal reagent for labeling proteins and peptides with 18F because of good conjugation yields and metabolic stability.  相似文献   

6.
Myocardial extractions of pyridaben, a mitochondrial complex I (MC-I) inhibitor, is well correlated with blood flow. Based on the synthesis and characterization of pyridaben analogue 2-tert-butyl-5-[2-(2-[18F]fluroethoxy)ethoxy]benzyloxy]-4-chloro-2H-pyridazin-3-one ([18F]FP2OP), this study assessed its potential to be developed as myocardial perfusion imaging (MPI) agent.Methods: The tosylate labeling precursor 2-(2-(4-(tert-butyl-5-chloro-6-oxo-1,6-dihydro-pyridazin-4-yloxymethyl)benzyloxy)ethoxy)ethyl ester (OTs-P2OP) and the nonradioactive 2-tert-butyl-5-[2-(2-[19F]fluroethoxy)ethoxy]benzyloxy]-4-chloro-2H-pyridazin-3-one ([19F]FP2OP) were synthesized and characterized by IR, 1H NMR, 13C NMR and MS analysis. By substituting tosyl of precursor OTs-P2OP with 18F, the radiolabeled complex [18F]FP2OP was prepared and further evaluated for its in vitro physicochemical properties, in vivo biodistribution, the metabolic stability in mice, ex vivo autoradiography and cardiac PET/CT imaging.Results: Starting with [18F]F? Kryptofix 2.2.2./K2CO3 solution, the total reaction time for [18F]FP2OP was about 100 min, with final high-performance liquid chromatography purification included. Typical decay-corrected radiochemical yield stayed at 41 ± 5.3%, the radiochemical purity, 98% or more. Biodistribution in mice showed that the heart uptake of [18F]FP2OP was 41.90 ± 4.52%ID/g at 2 min post-injection time, when the ratio of heart/liver, heart/lung and heart/blood reached 6.83, 9.49 and 35.74, respectively. Lipophilic molecule was further produced by metabolized [18F]FP2OP in blood and urine at 30 min. Ex vivo autoradiography demonstrates that [18F]FP2OP may have high affinity with MC-I and that can be blocked by [19F]FP2OP or rotenone (a known MC-I inhibitor). Cardiac PET images were obtained in a Chinese mini-swine at 5, 15, 30 and 60 min post-injection time with high quality.Conclusion: [18F]FP2OP was synthesized with high radiochemical yield. The promising biological properties of [18F]FP2OP suggest high potential as MPI agent for positron emission tomography in the future.  相似文献   

7.
Asialoglycoprotein receptors (ASGP-R) are well known to exist on the mammalian liver, situate on the surface of hepatocyte membrane. Quantitative imaging of asialoglycoprotein receptors could estimate the function of the liver. 99mTc labeled galactosyl-neoglycoalbumin (NGA) and diethylenetriaminepentaacetic acid galactosyl human serum albumin (GSA) have been developed for SPECT imaging and clinical used in Japan. In this study, we labeled the NGA with 18F to get a novel PET tracer [18F]FNGA and evaluated its hepatic-targeting efficacy and pharmacokinetics. Methods: NGA was labeled with 18F by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. The in vivo metabolic stability of [18F]FNGA was determined. Ex vivo biodistribution of [18F]FNGA and blocking experiment was investigated in normal mice. MicroPET images were acquired in rat with and without block at 5 min and 15 min after injection of the radiotracer (3.7 MBq/rat), respectively. Results: Starting with 18F Kryptofix 2.2.2./K2CO3 solution, the total reaction time for [18F]FNGA is about 150 min. Typical decay-corrected radiochemical yield is about 8–10%. After rapid purified with HiTrap desalting column, the radiochemical purity of [18F]FNGA was more than 99% determined by radio-HPLC. [18F]FNGA was metabolized to produce [18F]FB-Lys in urine at 30 min. Ex vivo biodistribution in mice showed that the liver accumulated 79.18 ± 7.17% and 13.85 ± 3.10% of the injected dose per gram at 5 and 30 min after injection, respectively. In addition, the hepatic uptake of [18F]FNGA was blocked by pre-injecting free NGA as blocking agent (18.55 ± 2.63%ID/g at 5 min pi), indicating the specific binding to ASGP receptor. MicroPET study obtained quality images of rat at 5 and 15 min post-injection. Conclusion: The novel ASGP receptor tracer [18F]FNGA was synthesized with high radiochemical yield. The promising biological properties of [18F]FNGA afford potential applications for assessment of hepatocyte function in the future. It may provide quantitative information and better resolution which particularly help to the liver surgery.  相似文献   

8.
Li ZB  Wu Z  Chen K  Chin FT  Chen X 《Bioconjugate chemistry》2007,18(6):1987-1994
The cell adhesion molecule integrin alpha vbeta 3 plays a key role in tumor angiogenesis and metastasis. A series of (18)F-labeled RGD peptides have been developed for PET of integrin expression based on primary amine reactive prosthetic groups. In this study, we report the use of the Cu(I)-catalyzed Huisgen cycloaddition, also known as a click reaction, to label RGD peptides with (18)F by forming 1,2,3-triazoles. Nucleophilic fluorination of a toluenesulfonic alkyne provided (18)F-alkyne in high yield (nondecay-corrected yield: 65.0 +/- 1.9%, starting from the azeotropically dried (18)F-fluoride), which was then reacted with an RGD azide (nondecay-corrected yield: 52.0 +/- 8.3% within 45 min including HPLC purification). The (18)F-labeled peptide was subjected to microPET studies in murine xenograft models. Murine microPET experiments showed good tumor uptake (2.1 +/- 0.4%ID/g at 1 h postinjection (p.i.)) with rapid renal and hepatic clearance of (18)F-fluoro-PEG-triazoles-RGD 2 ( (18)F-FPTA-RGD2) in a subcutaneous U87MG glioblastoma xenograft model (kidney 2.7 +/- 0.8%ID/g; liver 1.9 +/- 0.4%ID/g at 1 h p.i.). Metabolic stability of the newly synthesized tracer was also analyzed (intact tracer ranging from 75% to 99% at 1 h p.i.). In brief, the new tracer (18)F-FPTA-RGD2 was synthesized with high radiochemical yield and high specific activity. This tracer exhibited good tumor-targeting efficacy and relatively good metabolic stability, as well as favorable in vivo pharmacokinetics. This new (18)F labeling method based on click reaction may also be useful for radiolabeling of other biomolecules with azide groups in high yield.  相似文献   

9.
The radiosynthesis and radiopharmacological evaluation of 3-[4′-[18F]fluorobenzylidene]indolin-2-one, a derivative of tyrosine kinase inhibitor SU5416, is described. The radiosynthesis was accomplished by Knoevenagel condensation of 4-[18F]fluorobenzaldehyde with oxindole in a remotely controlled synthesis module. The reaction conditions were optimized through screening the influence of different bases on the radiochemical yield. The radiotracer was obtained after a two-step labelling procedure in 4% decay-corrected radiochemical yield at a specific activity of 48–61 GBq/μmol within 90 min. The radiochemical purity after semi-preparative HPLC purification exceeded 98%.The biodistribution was studied in Wistar rats. After distribution the radiotracer was rapidly accumulated in the adrenals, liver and kidneys, however, it was cleared from these and the most other organs. Only the adipose tissue remained the activity over 60 min. Unexpected high transient uptake was observed in the brain, pancreas, heart and lung. The fast clearance of 3-[4′-[18F]fluorobenzylidene]indolin-2-one was caused by excretion, approximately one half each was renal and biliary excreted and the other part cleared by metabolic processes. In arterial blood plasma two more polar metabolites were found by radio-HPLC. After 20 min post-injection, only 12% of intact radiotracer has been detected. Consequently, in small animal PET studies with FaDu tumour bearing mice no specific uptake in the tumours could be observed.  相似文献   

10.
The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.  相似文献   

11.
A procedure for the synthesis of a11C‐labeled oligopeptide containing [1‐11C]1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid ([1‐11C]Tpi) from the corresponding Trp?HCl‐containing peptides has been developed involving a Pictet‐Spengler reaction with [11C]formaldehyde. The synthesis of [1‐11C]Tpi from Trp and [11C]formaldehyde was examined as a model reaction with the aim of developing a facile and effective method for the labeling of peptides with carbon‐11. The Pictet‐Spengler reaction of Trp and [11C]formaldehyde in acidic media (TsOH or HCl) afforded the desired [1‐11C]Tpi in a moderate radiochemical yield. Herein, the application of a Pictet‐Spengler reaction to an aqueous solution of Trp?HCl gave the desired product with a radiochemical yield of 45.2%. The RGD peptide cyclo[Arg‐Gly‐Asp‐D‐Tyr‐Lys] was then selected as a substrate for the labeling reaction with [11C]formaldehyde. The radiolabeling of a Trp?HCl‐containing RGD peptide using the Pictet‐Spengler reaction was successful. Furthermore, the remote‐controlled synthesis of a [1‐11C]Tpi‐containing RGD peptide was attempted by using an automatic production system to generate [11C]CH3I. The radiochemical yield of the [1‐11C]Tpi‐containing RGD at the end of synthesis (EOS) was 5.9 ± 1.9% (n = 4), for a total synthesis time of about 35 min. The specific activity was 85.7 ± 9.4 GBq/µmol at the EOS. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
A new [18F] labeled amino acid anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[18F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [18F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [18F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [18F]9 is a potential PET tracer for brain tumor imaging.  相似文献   

13.
An efficient method based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine has been developed for (18)F-labeling of N-terminal cysteine-bearing peptides and proteins. An (18)F-labeled dimeric cRGD ([(18)F]CBTRGD(2)) has been synthesized with an excellent radiochemical yield (92% based on radio-HPLC conversion, 80% decay-corrected, and isolated yield) and radiochemical purity (>99%) under mild conditions using (18)F-CBT, and shown good in vivo tumor targeting efficiency for PET imaging. The labeling strategy was also applied to the site-specific (18)F-labeling of a protein, Renilla lucifierase (RLuc8) with a cysteine residue at its N-terminus. The protein labeling was achieved with 12% of decay-corrected radiochemical yield and more than 99% radiochemical purity. This strategy should provide a general approach for efficient and site-specific (18)F-labeling of various peptides and proteins for in vivo molecular imaging applications.  相似文献   

14.
2-[(18)F]Fluoroethyl azide ([(18)F]FEA) and terminal alkynyl modified propioloyl RGDfK were selected in this study. [(18)F]FEA was prepared by nucleophilic radiofluorination of 2-azidoethyl 4-toluenesulfonate with radiochemical yield of 71 ± 4% (n = 5, decay-corrected). We assessed the various conditions of the CuAAC reaction between [(18)F]FEA and propioloyl RGDfK, which included peptide concentration, reaction time, temperature and catalyst dosage. The (18)F-labeled-RGD peptide ([(18)F]F-RGDfK) could be obtained in 60 min by a two-step radiochemical synthesis route, with total radiochemical yield of 60 ± 2% (n = 3, decay-corrected) through click chemistry. [(18)F]F-RGDfK showed high stability in phosphate buffered saline and new-born calf serum. Micro-PET imaging at 1 h post injection of [(18)F]F-RGDfK showed medium concentration of radioactivity in tumors while much decreased concentration in tumors in the blocking group. These results showed that [(18)F]F-RGDfK obtained by click chemistry maintained the affinity and specificity of the RGDfK peptide to integrin α(v)β(3). This study provided useful information for peptide radiofluorination by using click chemistry.  相似文献   

15.
The [18F]fluorocyclobutyl group has the potential to be a metabolically stable prosthetic group for PET tracers. The synthesis of the radiolabeling precursor cis-cyclobutane-1,3-diyl bis(toluene-4-sulfonate) 8 was obtained from epibromohydrin in 7 steps (2% overall yield). The radiolabeling of this precursor 8 and its conjugation to l-tyrosine as a model system was successfully achieved to give the new non-natural amino acid 3-[18F]fluorocyclobutyl-l-tyrosine (L-3-[18F]FCBT) [18F]17 in 8% decay-corrected yield from the non-carrier-added [18F]fluoride. L-3-[18F]FCBT was investigated in vitro in different cancer cell lines to determine the uptake and stability. The tracer [18F]17 showed a time dependent uptake into different tumor cell lines (A549, NCI-H460, DU145) with the best uptake of 5.8% injected dose per 5 × 105 cells after 30 min in human lung carcinoma cells A549. The stability of L-3-[18F]FCBT in human and rat plasma and the stability of the non-radioactive L-3-FCBT in rat hepatocytes were both found to be excellent. These results show that the non-natural amino acid L-3-[18F]FCBT is a promising metabolically stable radiotracer for positron emission tomography.  相似文献   

16.
A systematic comparison of 4-[18F]fluorobenzaldehyde-O-(2-{2-[2-(pyrrol-2,5-dione-1-yl)ethoxy]-ethoxy}-ethyl)oxime ([18F]FBOM) and 4-[18F]fluorobenzaldehyde-O-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl]oxime ([18F]FBAM) as prosthetic groups for the mild and efficient 18F labeling of cysteine-containing peptides and proteins with the amine-group reactive acylation agent, succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), is described. All three prosthetic groups were prepared in a remotely controlled synthesis module. Synthesis of [18F]FBOM and [18F]FBAM was accomplished via oxime formation through reaction of appropriate aminooxy-functionalized labeling precursors with 4-[18F]fluorobenzaldehyde. The obtained radiochemical yields were 19% ([18F]FBOM) and 29% ([18F]FBAM), respectively. Radiolabeling involving [18F]FBAM and [18F]FBOM was exemplified by the reaction with cysteine-containing tripeptide glutathione (GSH), a cysteine-containing dimeric neurotensin derivative, and human native low-density lipoprotein (nLDL) as model compounds. Radiolabeling with the acylation agent [18F]SFB was carried out using a dimeric neurotensin derivative and nLDL. Both thiol-group reactive prosthetic groups show significantly better labeling efficiencies for the peptides in comparison with the acylation agent [18F]SFB. The obtained results demonstrate that [18F]FBOM is especially suited for the labeling of hydrophilic cysteine-containing peptides, whereas [18F]FBAM shows superior labeling performance for higher molecular weight compounds as exemplified for nLDL apolipoprotein constituents. However, the acylation agent [18F]SFB is the preferred prosthetic group for labeling nLDL under physiological conditions.  相似文献   

17.
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.  相似文献   

18.
The asialoglycoprotein receptor (ASGPR) is abundantly expressed on the surface of hepatocytes where it recognizes and endocytoses glycoproteins with galactosyl and N-acetylgalactosamine groups. Given its hepatic distribution, the asialoglycoprotein receptor can be targeted by positron imaging agents to study liver function using PET imaging. In this study, the positron imaging agent [18F]FPGal was designed to specifically target hepatic asialoglycoprotein receptor and its effectiveness was assessed in in vitro and in vivo models. The radiosynthesis of [18F]FPGal required 50 min with total radiochemical yields of [18F]FPGal from [18F]fluoride as 10% (corrected radiochemical yield). The Kd of [18F]FPGal to ASGPR in HepG2 cells was 1.99 ± 0.05 mM. Uptake values of 0.55% were observed within 30 min of incubation with HepG2 cells, which could be blocked by 200 mM d(+)-galactose (<0.1%). In vivo biodistribution analysis showed that the liver accumulation of [18F]FPGal at 30 min was 4.47 ± 0.96% ID/g in normal mice compared to 1.33 ± 0.07% ID/g in hepatic fibrotic mice (P < 0.01). Reduced uptake in the hepatic fibrosis mouse models was confirmed through PET/CT images at 30 min. Compared to normal mice, the standard uptake value (SUV) in the hepatic fibrosis mice was significantly lower when assessed through dynamic data collection for 1 h. Therefore, [18F]FPGal is a feasible PET probe that provide insight into ASGPR related liver disease.  相似文献   

19.
Positron emission tomography (PET) using fluorine-18 (18F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6′-deoxy-6′-[18F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[18F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [18F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12 ± 8% (n = 10, based on [18F]fluoride starting activity) in a total synthesis time of 60 min with a specific activity at end of synthesis of 218 ± 58 GBq/μmol (n = 10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[18F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[18F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13 ± 0.22 (n = 4) at 2 h after administration of β-[18F]1. In ex vivo autoradiography experiments β-[18F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[18F]1 shows potential as PET hypoxia radiotracer which merits further investigation.  相似文献   

20.
Production of [F-18]fluoroannexin for imaging apoptosis with PET   总被引:4,自引:0,他引:4  
Recombinant human-annexin-V was conjugated with 4-[F-18]fluorobenzoic acid (FBA) via its reaction with the N-hydroxysuccinimidyl ester (FBA-OSu) at pH 8.5. A series of reactions using varying amounts of annexin-V, unlabeled FBA-OSu, and time produced products with different conjugation levels. Products were characterized by mass spectrometry and a cell-binding assay to assess the effect of conjugation. In each case, the conjugated protein was a mixture of proteins with a range of conjugation. Annexin-V could be conjugated with an average of two FBA mole equivalents without decreasing its affinity for red blood cells (K(d) 6-10 nM) with exposed phosphatidylserine. An average conjugation of 7.7 (range 3-13) diminished the binding 3-fold. Large-scale production and purification of [F-18]FBA-OSu from [F-18]fluoride was accomplished within 90 min and in 77% radiochemical yield (decay-corrected to the end of cyclotron bombardment). The conjugation reaction of annexin with [F-18]FBA-OSu was studied with respect to activity level, protein mass, and concentration. Under the most favorable conditions, >25 mCi [F-18]fluoroannexin (FAN) was isolated in 64% yield (decay-corrected for a 22 min conjugation process) from labeling 1.1 mg of annexin-V. A pilot PET imaging study of [F-18]fluoroannexin in normal rats showed high uptake in the renal excretory system and demonstrated sufficient clearance from most other internal organs within 1 h. [F-18]Fluoroannexin should prove useful in imaging targeted apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号