首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.Key words: p400, chromatin remodeling, DNA repair, NuA4, H2AX, acetylation, nucleosome, tip60Damage to cellular DNA can occur through multiple pathways, including exposure to genotoxic agents, the production of endogenous reactive oxygen species or errors which arise during DNA replication. To combat this continuous assault on the genome, mammalian cells have evolved multiple DNA repair pathways. The most challenging lesions to repair are DSBs, which physically cleave the DNA strand. DSBs can occur through exposure to IR, the collapse of replication forks or during the processing of certain types of DNA damage. Over the last 20 years, a clear picture of how the cell detects and repairs DSBs has emerged.1,2 The earliest event in the cell''s response to DSBs is the rapid recruitment of the ATM kinase, followed by the phosphorylation of histone H2AX (termed γH2AX) on large chromatin domains which extend for 100''s of kilobases on either side of the DSB.3 The mdc1 scaffold protein is then recruited to γH2AX,4 providing a docking platform for the recruitment and retention of additional DNA repair proteins, including the MRN complex, the RNF8 ubiquitin ligase and the brca1 and 53BP1 proteins, onto the chromatin at DSBs.57 Eventually, this spreading of DNA repair proteins along the chromatin from the DSB leads to the formation of IRIF, which can be visualized by immunofluorescent techniques. DSBs are then repaired by NHEJ, in which broken DNA ends are directly religated, or by HR, using the undamaged sister chromatid (present during S-phase) as a template. A defining characteristic of DSB repair is the dominant role that chromatin structure plays in the detection and repair of these lesions. In this review, we will examine recent work exploring how remodeling of the chromatin structure adjacent to DSBs plays a key role in the repair of DSBs.  相似文献   

2.
3.
Ionizing radiation and radiomimetic drugs such as bleomycin, calichieamycin, neocarzinostatin chromophore, and other synthetic agents can produce both single and double strand breaks in DNA. The ability to study the structure-activity relationships of single and double-strand break repair, lethality, and mutagenesis in vivo is complicated by the numerous types and sites of DNA cleavage products that can be induced by such agents. The ability to "cage" such breaks in DNA might help to further such studies and additionally afford a mechanism for activating and deactivating nucleic acid based drugs and probes. The major type of single strand break induced by ionizing radiation is a 3'- and 5'-phosphate terminated single nucleotide gap. Previously, a caged strand break of this type had been developed that was designed to produce the 5'-phosphate directly upon irradiation with 366 nm light, and the 3'-phosphate by a subsequent beta-elimination reaction [Ordoukhanian, P., and Taylor, J.-S. (1995) J. Am. Chem. Soc. 117, 9570]. Unfortunately, the release of the 3'-phosphate group was quite slow at pH 7. To circumvent this problem, a second caged strand break has been developed that produces the 3'-phosphate directly upon irradiation, and the 5'-phosphate by a subsequent beta-elimination reaction. When this caged strand break was used in tandem with the previous caged strand break, 5'- and 3'-phosphate terminated gaps could be directly produced by irradiation with 366 nm light. These caged single strand breaks were also incorporated in tandem into hairpin substrates to demonstrate that they could be used to cage double strand breaks. These caged single strand breaks should be generally useful for generating site-specific DNA single and double strand breaks and gaps, using wavelengths and doses of light that are nondetrimental to biological systems. Because the position of the single strand break can be varied, it should now be possible to examine the effect of the sequence context and cleavage pattern of single and double strand breaks on the lethality and mutagenicity of this important class of DNA damage.  相似文献   

4.
Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region.  相似文献   

5.
We have previously shown that human cancer cells deficient in DNA mismatch repair (MMR) are resistant to the chemotherapeutic methylating agent temozolomide (TMZ) and can be sensitized by the base excision repair (BER) blocking agent methoxyamine (MX) [21]. To further characterize BER-mediated repair responses to methylating agent-induced DNA damage, we have now evaluated the effect of MX on TMZ-induced DNA single strand breaks (SSB) by alkaline elution and DNA double strand breaks (DSB) by pulsed field gel electrophoresis in SW480 (O6-alkylguanine-DNA-alkyltransferase [AGT]+, MMR wild type) and HCT116 (AGT+, MMR deficient) colon cancer cells. SSB were evident in both cell lines after a 2-h exposure to equitoxic doses of temozolomide. MX significantly increased the number of TMZ-induced DNA-SSB in both cell lines. In contrast to SSB, TMZ-induced DNA-DSB were dependent on MMR status and were time-dependent. Levels of 50 kb double stranded DNA fragments in MMR proficient cells were increased after TMZ alone or in combination with O6-benzylguanine or MX, whereas, in MMR deficient HCT116 cells, only TMZ plus MX produced significant levels of DNA-DSB. Levels of AP endonuclease, XRCC1 and polymerase beta were present in both cell lines and were not significantly altered after MX and TMZ. However, cleavage of a 30-mer double strand substrate by SW480 and HCT116 crude cell extracts was inhibited by MX plus TMZ. Thus, MX potentiation of TMZ cytotoxicity may be explained by the persistence of apurinic/apyrimidinic (AP) sites not further processed due to the presence of MX. Furthermore, in MMR-deficient, TMZ-resistant HCT116 colon cancer cells, MX potentiates TMZ cytotoxicity through formation of large DS-DNA fragmentation and subsequent apoptotic signalling.  相似文献   

6.
Head and neck cancers (head and neck squamous cell carcinomas [HNSCC]) are a heterogeneous group of neoplasms with varying presenting symptoms, treatment, and expected outcome. There is a need to find an effective way of its treatment at the molecular level. Thus, we should identify the mechanism of cancer cell response to damaging agents' activity, especially at DNA level. Our major goal was to evaluate the efficacy of DNA double strand breaks (DSBs) repair in HTB-43 and SCC-25 cancer cell lines as well as lymphocytes taken from HNSCC patients and healthy donors. The DNA repair efficiency was measured by neutral comet assay as well as extrachromosomal assay for DNA DSBs repair (TAK assay). We determined the levels of two main pathways of DNA DSBs-nonhomologous end joining (NHEJ) and homologous recombination repair (HRR). Neutral comet assay was used for evaluation of DNA DSBs repair after treatment with genotoxic agents. DNA DSBs induced by gamma radiation were repaired slower in lymphocytes from HNSCC patients than in lymphocytes from healthy controls. HTB-43 and SCC-25 cancer cell lines have higher efficacy of NHEJ and HRR than lymphocytes taken from patients as well as control subjects. Our results confirm the necessity of further studies on the mechanisms of DNA DSBs repair to provide insight into the molecular basis of head and neck cancer, which will allow us to improve methods of HNSCC treatment.  相似文献   

7.
Wang M  Wu W  Wu W  Rosidi B  Zhang L  Wang H  Iliakis G 《Nucleic acids research》2006,34(21):6170-6182
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.  相似文献   

8.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

9.
Although poly(ADP-ribose) polymerase-1 (PARP-1) has no enzymatic activity involved in DNA damage processing by the base excision repair (BER) pathway, PARP-1 deficient cells are genetically unstable and sensitive to DNA-damaging agents. To explain this paradox, we investigated the impact of PARP-1 on BER in mammalian cells. We reduced cellular PARP-1 protein levels using siRNA, then introduced DNA damage by hydrogen peroxide treatment and examined the repair response. We find that PARP-1 is not involved in recruitment of the major BER proteins to sites of DNA damage. However, we find that PARP-1 protects excessive DNA single strand breaks (SSBs) from converting into DNA double strand breaks (DSBs) thus preserving them for subsequent repair by BER enzymes. This suggests that PARP-1 plays an important role in BER by extending the ability of BER enzymes to process DNA single strand breaks arising directly after mutagen stress or during processing of DNA lesions following extensive DNA damage.  相似文献   

10.
Escherichia coli K-12 cells incubated in buffer can repair most of their X-ray-induced DNA single-strand breaks, but additional single-strand breaks are repaired when the cells are incubated in growth medium. While the radC102 mutant was proficient at repairing DNA single-strand breaks in buffer (polA-dependent repair), it was partially deficient in repairing the additional single-strand breaks (or alkali-labile lesions) that the wild-type strain can repair in growth medium (recA-dependent repair), and this repair deficiency correlated with the X-ray survival deficiency of the radC strain. In studies using neutral sucrose gradients, the radC strain consistently showed a small deficiency in rejoining X-ray-induced DNA double-strand breaks, and it was deficient in restoring the normal sedimentation characteristics of the repaired DNA.  相似文献   

11.
Lundblad V 《Mutation research》2000,451(1-2):227-240
This review focuses on the factors that define the differences between the two types of DNA ends encountered by eukaryotic cells: telomeres and double strand breaks (DSBs). Although these two types of DNA termini are functionally distinct, recent studies have shown that a number of proteins is shared at telomeres and sites of DSB repair. The significance of these common components is discussed, as well as the types of DNA repair events that can compensate for a defective telomere.  相似文献   

12.
Base excision repair (BER) is the major pathway for the repair of simple, non-bulky lesions in DNA that is initiated by a damage-specific DNA glycosylase. Several human DNA glycosylases exist that efficiently excise numerous types of lesions, although the close proximity of a single strand break (SSB) to a DNA adduct can have a profound effect on both BER and SSB repair. We recently reported that DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB are resistant to DNA glycosylase activity and this study further examines the processing of these ‘complex’ lesions. We first demonstrated that the damaged base should be excised before SSB repair can occur, since it impaired processing of the SSB by the BER enzymes, DNA ligase IIIα and DNA polymerase β. Using human whole cell extracts, we next isolated the major activity against DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB and identified it as DNA polymerase δ (Pol δ). Using recombinant protein we confirmed that the 3′-5′-exonuclease activity of Pol δ can efficiently remove these DNA lesions. Furthermore, we demonstrated that mouse embryonic fibroblasts, deficient in the exonuclease activity of Pol δ are partially deficient in the repair of these ‘complex’ lesions, demonstrating the importance of Pol δ during the repair of DNA lesions in close proximity to a DNA SSB, typical of those induced by ionizing radiation.  相似文献   

13.
Mammalian cells can choose either nonhomologous end joining (NHEJ) or homologous recombination (HR) for repair of chromosome breaks. Of these two pathways, HR alone requires extensive DNA synthesis and thus abundant synthesis precursors (dNTPs). We address here if this differing requirement for dNTPs helps determine how cells choose a repair pathway. Cellular dNTP pools are regulated primarily by changes in ribonucleotide reductase activity. We show that an inhibitor of ribonucleotide reductase (hydroxyurea) hypersensitizes NHEJ-deficient cells, but not wild type or HR-deficient cells, to chromosome breaks introduced by ionizing radiation. Hydroxyurea additionally reduces the frequency of irradiated cells with a marker for an early step in HR, Rad51 foci, consistent with reduced initiation of HR under these conditions. Conversely, promotion of ribonucleotide reductase activity protects NHEJ-deficient cells from ionizing radiation. Importantly, promotion of ribonucleotide reductase activity also increases usage of HR in cells proficient in both NHEJ and HR at a targeted chromosome break. Activity of ribonucleotide reductase is thus an important factor in determining how mammalian cells repair broken chromosomes. This may explain in part why G1/G0 cells, which have reduced ribonucleotide reductase activity, rely more on NHEJ for DSB repair.  相似文献   

14.
BRCA1 is critical for the maintenance of genomic stability, in part through its interaction with the Rad50.Mre11.Nbs1 complex, which occupies a central role in DNA double strand break repair mediated by nonhomologous end joining (NHEJ) and homologous recombination. BRCA1 has been shown to be required for homology-directed recombination repair. However, the role of BRCA1 in NHEJ, a critical pathway for the repair of double strand breaks and genome stability in mammalian cells, remains elusive. Here, we established a pair of mouse embryonic fibroblasts (MEFs) derived from 9.5-day-old embryos with genotypes Brca1(+/+):p53(-/-) or Brca1(-/-):p53(-/-). The Brca1(-/-):p53(-/-) MEFs appear to be extremely sensitive to ionizing radiation. The contribution of BRCA1 in NHEJ was evaluated in these cells using three different assay systems. First, transfection of a linearized plasmid in which expression of the reporter gene required precise end joining indicated that Brca1(-/-) MEFs display a moderate deficiency when compared with Brca1(+/+) cells. Second, using a retrovirus infection assay dependent on NHEJ, a 5-10-fold reduction in retroviral integration efficiency was observed in Brca1(-/-) MEFs when compared with the Brca1(+/+) MEFs. Third, Brca1(-/-) MEFs exhibited a 50-100-fold deficiency in microhomology-mediated end-joining activity of a defined chromosomal DNA double strand break introduced by a rare cutting endonuclease I-SceI. These results provide evidence that Brca1 has an essential role in microhomology-mediated end joining and suggest a novel molecular basis for its caretaker role in the maintenance of genome integrity.  相似文献   

15.
The aim of this work was to make a preliminary examination of some hereditary diseases, related to precocious aging in order to determine whether the defects involved resulted from an impairment of the DNA repair capacity. To test for an impairment in DNA single strand capacity, in cells from patients with different diseases, we have followed the rate of the DNA after X-irradiation by sedimentation on alkaline sucrose gradients. It was found that all cells observed from lesch nyhan, cystic fibrosis, trisomy 15 et 21, retinoblastoma, were able to repair the single strand breaks in their DNA to the same extent and at the same initial rate.  相似文献   

16.
The nitrosoureas derived from 3 naturally occurring ureides were administered to rats and the velocity sedimentation of hepatic DNA in alkaline and neutral sucrose gradients determined. The potent hepatocarcinogen 1-nitroso-5,6-dihydrouracil induced apparent double strand as well as single strand breaks in liver DNA within 30 minutes. This damage seemed to be repaired within 4 hours. In contrast, 1-nitrosohydantoin and δ-nitroso-L-citrulline, neither of which are known hepatocarcinogens, did not modify the velocity sedimentation of hepatic DNA.  相似文献   

17.
Xie H  Wise SS  Wise JP 《Mutation research》2008,649(1-2):230-238
Hexavalent chromium (Cr(VI)) is a potent respiratory toxicant and carcinogen. The most carcinogenic forms of Cr(VI) are the particulate salts such as lead chromate, which deposit and persist in the respiratory tract after inhalation. We demonstrate here that particulate chromate induces DNA double strand breaks in human lung cells with 0.1, 0.5, and 1 microg/cm(2) lead chromate inducing 1.5, 2, and 5 relative increases in the percent of DNA in the comet tail, respectively. These lesions are repaired within 24 h and require Mre11 expression for their repair. Particulate chromate also caused Mre11 to co-localize with gamma-H2A.X and ATM. Failure to repair these breaks with Mre11-induced neoplastic transformation including loss of cell contact inhibition and anchorage-independent growth. A 5-day exposure to lead chromate induced loss of cell contact inhibition in a concentration-dependent manner with 0, 0.1, 0.5, and 1 microg/cm(2) lead chromate inducing 1, 78, and 103 foci in 20 dishes, respectively. These data indicate that Mre11 is critical to repairing particulate Cr(VI)-induced double strand breaks and preventing Cr(VI)-induced neoplastic transformation.  相似文献   

18.
19.
DNA single strand breaks (ssb) have been induced in FLC/C cells in culture. They have been visualized in the electron microscope after decoration with biotin-avidin-ferritin complexes and spreading as monomolecular mixed films. This allowed one to determine the average number of decorated ssbs per unit of DNA length applying straight-forward and simple evaluation methods. This method has been used to investigate the DNA alterations by benzo[a]pyrene (B[a]P) on FLC/C culture cells. Thus a B[a]P-DNA damage curve can be constructed as a regression with a correlation coefficient of r = 0.97, while its isomer benzo[e]pyrene (B[e]P) known to have only low mutagenicity under the same experimental conditions is virtually without effect. The method has further informational potential regarding damage distribution and repair of DNA.  相似文献   

20.
DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号