首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. RESULTS: A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI) and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. CONCLUSIONS: Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.  相似文献   

2.
Thorough understanding of how hemicelluloses removal influences cell wall nanoscale architecture and cellulose digestion is of crucial importance for enabling low-cost industrial conversion of lignocellulosic biomass to renewable biofuels. In this work, delignified poplar cell walls, after various degrees of hemicelluloses removal, were characterized by Fourier transform infrared imaging spectroscopy and atomic force microscopy to evaluate enhancement in cell wall digestibility. There was a gradual decrease in hemicelluloses content with dilute alkali treatment, which resulted in alterations in the nanoscale architecture and crystallinity of cell walls. Removal of hemicelluloses did not disrupt the integrity of microfibrils but resulted in exposure of microfibrils and a decrease in the diameter of microfibrils. X-ray analysis indicated that the increase in crystallinity beyond natural variations in the crystallinity of cellulose was mainly attributable to removal of hemicelluloses. In conclusion, alterations in the architecture and crystallinity of cell walls facilitated enzymatic digestion of delignified poplar, enhancing cellulose conversion from 68.24 to 75.16 %.  相似文献   

3.
Enzymatic hydrolysis of biomass is an established method for producing biofuels. Lignocellulosic biomass such as corn stover is very inhomogeneous material with big variation on conversion rates between individual particles therefore leading to variable recalcitrance results. In this study, we used noninvasive optical microscopy techniques, such as two-photon microscopy and fluorescence lifetime imaging microscopy, to visualize and analyze morphological and chemical changes of individual corn stover particles pretreated with sulfuric acid during hydrolysis. Morphochemical changes were interpreted based on the fluorescence properties of isolated building blocks of plant cell wall, such as cellulose, hemicellulose, and lignin. Enzymatic hydrolysis resulted in particle size reduction, side wall collapse, decrease of second harmonic signal from cellulose, redshifting of autofluorescence emission, and lifetime decrease attributed to the relative increase of lignin. Based on these observations, tracking compositional change after hydrolysis of individual particles was accomplished. The methodologies developed offer a paradigm for imaging and analyzing enzymatic hydrolysis in vitro and in situ, which could be used for screening enzymes cocktails targeting specific recalcitrant structures or investigating locally enzyme anti-inhibitory agents.  相似文献   

4.

Background

Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility.

Results

Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains in the future.

Conclusions

Using nine typical pairs of wheat and rice samples having distinct cell wall compositions and wide biomass saccharification, Ara substitution degree and monolignin H proportion have been revealed to be the dominant factors positively determining biomass digestibility upon various chemical pretreatments. The results demonstrated the potential of genetic modification of plant cell walls for high biomass saccharification in bioenergy crops.
  相似文献   

5.
Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.  相似文献   

6.
The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation2 and other products such as biocomposite materials6. Plant biomass remains one of the greatest untapped reserves on the planet4. It is mostly comprised of cell walls that are composed of energy rich polymers including cellulose, various hemicelluloses, and the polyphenol lignin5 and thus sometimes termed lignocellulosics. However, plant cell walls have evolved to be recalcitrant to degradation as walls contribute extensively to the strength and structural integrity of the entire plant. Despite its necessary rigidity, the cell wall is a highly dynamic entity that is metabolically active and plays crucial roles in numerous cell activities such as plant growth and differentiation5. Due to the various functions of walls, there is an immense structural diversity within the walls of different plant species and cell types within a single plant4. Hence, depending of what crop species, crop variety, or plant tissue is used for a biorefinery, the processing steps for depolymerisation by chemical/enzymatic processes and subsequent fermentation of the various sugars to liquid biofuels need to be adjusted and optimized. This fact underpins the need for a thorough characterization of plant biomass feedstocks. Here we describe a comprehensive analytical methodology that enables the determination of the composition of lignocellulosics and is amenable to a medium to high-throughput analysis (Figure 1). The method starts of with preparing destarched cell wall material. The resulting lignocellulosics are then split up to determine its monosaccharide composition of the hemicelluloses and other matrix polysaccharides1, and its content of crystalline cellulose7. The protocol for analyzing the lignin components in lignocellulosic biomass is discussed in Part I3.  相似文献   

7.
Auto‐fluorescent mapping of plant cell walls was used to visualize cellulose and lignin in pristine switchgrass (Panicum virgatum) stems to determine the mechanisms of biomass dissolution during ionic liquid pretreatment. The addition of ground switchgrass to the ionic liquid 1‐n‐ethyl‐3‐methylimidazolium acetate resulted in the disruption and solubilization of the plant cell wall at mild temperatures. Swelling of the plant cell wall, attributed to disruption of inter‐ and intramolecular hydrogen bonding between cellulose fibrils and lignin, followed by complete dissolution of biomass, was observed without using imaging techniques that require staining, embedding, and processing of biomass. Subsequent cellulose regeneration via the addition of an anti‐solvent, such as water, was observed in situ and provided direct evidence of significant rejection of lignin from the recovered polysaccharides. This observation was confirmed by chemical analysis of the regenerated cellulose. In comparison to untreated biomass, ionic liquid pretreated biomass produces cellulose that is efficiently hydrolyzed with commercial cellulase cocktail with high sugar yields over a relatively short time interval. Biotechnol. Bioeng. 2009; 104: 68–75 Published 2009 Wiley Periodicals, Inc.  相似文献   

8.
Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils.  相似文献   

9.
The enzymatic degradation of the plant cell wall is central both to the natural carbon cycle and, increasingly, to environmentally friendly routes to biomass conversion, including the production of biofuels. The plant cell wall is a complex composite of cellulose microfibrils embedded in diverse polysaccharides collectively termed hemicelluloses. Xyloglucan is one such polysaccharide whose hydrolysis is catalyzed by diverse xyloglucanases. Here we present the structure of the Clostridium thermocellum xyloglucanase Xgh74A in both apo and ligand-complexed forms. The structures, in combination with mutagenesis data on the catalytic residues and the kinetics and specificity of xyloglucan hydrolysis reveal a complex subsite specificity accommodating seventeen monosaccharide moieties of the multibranched substrate in an open substrate binding terrain.  相似文献   

10.
Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.  相似文献   

11.
Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate‐active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non‐cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV‐pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose‐degrading enzyme cocktail by 2.4‐fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro‐slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.  相似文献   

12.
Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon) and desorption (koff) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.  相似文献   

13.
This paper discusses a property associated with plant biomass recalcitrance to enzyme and microbial deconstructions in sugar production from cellulose and hemicelluloses. The hemicelluloses are more readily hydrolyzed to sugars than is cellulose. As a result, optimization to maximize individual glucose and hemicellulose sugar recovery is not possible. This property is an inherent feature of plant biomass and is named polydispersity of plant biomass recalcitrance (PPBR) in this study. A set of pretreatment experiments using eucalyptus and sulfite pretreatment to overcome recalcitrance of lignocelluloses was conducted. The results were used to predict the conditions for individually maximizing enzymatic glucose and xylose yields. The predicted maximal yields were used to quantitatively illustrate the PPBR concept. The effect of PPBR on pretreatment optimization and strategies for maximal sugar recovery using two-stage pretreatment are discussed.  相似文献   

14.
Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β‐1,4‐glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.  相似文献   

15.
At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into fermentable sugars were identified. Stem samples from eight contrasting genotypes were subjected to a series of thermal dilute-acid pretreatments of increasing severity and evaluated for glucose release after enzymatic saccharification. The biochemically diverse set of genotypes displayed significant differences in glucose yields at all processing conditions evaluated. The results revealed that mechanisms controlling biomass conversion efficiency vary in relation to pretreatment severity. At highly severe pretreatments, cellulose conversion efficiency was primarily influenced by the inherent efficacy of the thermochemical process, and maximum glucose yields were obtained from cellulosic feedstocks harboring the highest cellulose contents per dry gram of biomass. When mild dilute-acid pretreatments were applied, however, maximum bioconversion efficiency and glucose yields were observed for genotypes combining high stem cellulose contents, reduced cell wall lignin and highly substituted hemicelluloses. For the best-performing genotype, glucose yields under sub-optimal processing regimes were only 10 % lower than the genotype-set mean at the most stringent processing conditions evaluated, while furfural production was reduced by approximately 95 %. Our results ultimately established that cellulosic feedstocks with tailored cell wall compositions can help reduce the chemical and energetic intensity of pretreatments used in the industry and improve the commercial and environmental performance of biomass-to-ethanol conversion technologies.  相似文献   

16.
One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.  相似文献   

17.
The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.  相似文献   

18.
Biomass accumulated by the photosynthetic fixation of carbon dioxide is the only renewable carbon source, and hence, the only renewable raw material for the chemical industry. Carbohydrates are the main constituents of biomass and occur as cell wall and storage carbohydrates, transportation carbohydrates and glycoconjugates. Cellulose, hemicelluloses and starch in particular as well as pectin, inulin and saccharose to a smaller extent are the most abundant carbohydrates. Glucose is the most important monosaccharide and monomer of polysaccharides in natural carbohydrates. Thus, it is the most abundant organic compound on earth. Production of pulp from wood cellulose, applications of starch for paper making as well as uses of glucose and saccharose for fermentation are the most important chemical and technical uses of carbohydrates. Carbohydrates used as fermentation feedstock are essential for the chemical industry. Their importance is steadily growing due to the increasing implementation of biotechnological processes.  相似文献   

19.
Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production.  相似文献   

20.
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.The organization and molecular architecture of plant cell walls represent some of the most challenging problems in plant biology. Although much is known about general aspects of assembly and biosynthesis of the plant cell wall, the detailed three-dimensional molecular cell wall structure remains poorly understood. The highly complex and dynamic nature of the plant cell wall has perhaps limited the generation of such detailed structural models. This information is pivotal for the successful implementation of novel approaches for conversion of biomass to liquid biofuels, given that one of the critical processing steps in biomass conversion involves systematic deconstruction of cell walls. Therefore, a comprehensive understanding of the architecture and chemical composition of the plant cell wall will not only help develop molecular-scale models, but will also help improve the efficiency of biomass deconstruction.The composition and molecular organization of the cell wall is species and cell type dependent (Vorwerk et al., 2004). Thus, the development of a model plant system, which utilizes a single cell type, has enhanced our capacity to understand cell wall architecture. The ability to generate a population of single Zinnia elegans plant cells that were synchronized throughout cell wall deposition during xylogenesis was developed in the 1980s (Fukuda and Komamine, 1980). Mesophyll cells isolated from the leaves of Zinnia and cultured in the presence of phytohormones will transdifferentiate into tracheary elements (TEs), which are individual components of the xylem vascular tissue (Fukuda and Komamine, 1980). During this transdifferentiation process, TEs gradually develop patterned secondary wall thickenings, commonly achieving annular, spiral, reticulate, scalariform, and pitted patterns (Bierhorst, 1960; Falconer and Seagull, 1988; Roberts and Haigler, 1994). These secondary wall thickenings serve as structural reinforcements that add strength and rigidity to prevent the collapse of the xylem under the high pressure created by fluid transport. During the final stages of transdifferentiation, TEs accumulate lignin in their secondary walls and undergo programmed cell death, which results in the removal of all cell contents, leaving behind a “functional corpse” (Roberts and McCann, 2000; Fukuda, 2004).In broad terms, the primary cell wall of higher plants is mainly composed of three types of polysaccharides: cellulose, hemicelluloses, and pectins (Cosgrove, 2005). Cellulose is composed of unbranched β-1,4-Glc chains that are packed together into fibrils by intermolecular and intramolecular hydrogen bonding. Hemicelluloses and pectins are groups of complex polysaccharides that are primarily composed of xyloglucans/xylans and galacturonans, respectively. Hemicelluloses are involved in cross-linking and associating with cellulose microfibrils, while pectins control wall porosity and help bind neighboring cells together. The patterned deposits of secondary wall in Zinnia TEs primarily consist of cellulose microfibrils, along with hemicelluloses, and also lignin, a complex aromatic polymer that is characteristic of secondary walls and provides reinforcement (Turner et al., 2007). All the molecular components in the cell wall correspond to a multitude of different polysaccharides, phenolic compounds, and proteins that become arranged and modified in muro, yielding a structure of great strength and resistance to degradation.Currently, electron microscopy is the primary tool for structural studies of cell walls and has provided remarkable information regarding wall organization. Fast-freeze deep-etch electron microscopy in combination with chemical and enzymatic approaches have generated recent models of the architecture of the primary wall (McCann et al., 1990; Carpita and Gibeaut, 1993; Nakashima et al., 1997; Fujino et al., 2000; Somerville et al., 2004). Direct visualization of secondary wall organization has been focused toward the examination of multiple wall layers in wood cells (Fahlen and Salmen, 2005; Zimmermann et al., 2006). However, few studies have examined the secondary wall, so our knowledge regarding the higher order architecture of this type of wall is limited. Over the past few decades, atomic force microscopy (AFM) has provided new opportunities to probe biological systems with spatial resolution similar to electron microscopy techniques (Kuznetsov et al., 1997; Muller et al., 1999), with additional ease of sample preparation and the capability to probe living native structures. AFM has been successfully applied to studies of the high-resolution architecture, assembly, and structural dynamics of a wide range of biological systems (Hoh et al., 1991; Crawford et al., 2001; Malkin et al., 2003; Plomp et al., 2007), thus enabling the observation of the ultrastructure of the plant cell wall, which is of particular interest to us (Kirby et al., 1996; Morris et al., 1997; Davies and Harris, 2003; Yan et al., 2004; Ding and Himmel, 2006).To generate more detailed structural models, knowledge about the structural organization of the cell wall can be combined with spatial information about chemical composition. Instead of utilizing chromatography techniques to analyze cell wall composition by extracting material from bulk plant samples (Mellerowicz et al., 2001; Pauly and Keegstra, 2008), Fourier transform infrared (FTIR) spectromicroscopy can be used to directly probe for polysaccharide and aromatic molecules in native as well as treated plant material (Carpita et al., 2001; McCann et al., 2001). FTIR spectromicroscopy is not only able to identify chemical components in a specific system but also can determine their distribution and relative abundance. This technique also improves the sensitivity and spatial resolution of cellular components without the derivatization needed by chemical analysis using chromatography. Polysaccharide-specific probes, such as carbohydrate-binding modules (CBMs), can also be used to understand the chemical composition of the plant cell wall. CBMs are noncatalytic protein domains existing in many glycoside hydrolases. Based on their binding specificities, CBMs are generally categorized into three groups: surface-binding CBMs specific for insoluble cellulose surfaces, chain-binding CBMs specific for single chains of polysaccharides, and end-binding CBMs specific for the ends of polysaccharides or oligosaccharides. A surface-binding CBM with high affinity for the planar faces of crystalline cellulose (Tormo et al., 1996; Lehtio et al., 2003) has been fluorescently labeled and used to label crystals as well as plant tissue (Ding et al., 2006; Porter et al., 2007; Liu et al., 2009; Xu et al., 2009). The binding capacity of the CBM family has been further exploited for the detection of different polysaccharides, such as xylans and glucans, and can thus be used for the characterization of plant cell wall composition (McCartney et al., 2004, 2006).In this study, we used a combination of AFM, synchrotron radiation-based (SR)-FTIR spectromicroscopy, and fluorescence microscopy using a cellulose-specific CBM to probe the cell wall of Zinnia TEs. The Zinnia TE culture system proved ideal for observing the structure and chemical composition of the cell wall because it comprises a single homogeneous cell type, representing a simpler system compared with plant tissues, which may contain multiple cell types. Zinnia TEs were also advantageous because they were analyzed individually, and population statistics were generated based on specific conditions. Furthermore, cultured Zinnia TEs were used for the consistent production of cell wall fragments for analysis of the organization of internal secondary wall structures. In summary, we have physically and chemically dissected Zinnia TEs using a combination of imaging techniques that revealed primary and secondary wall structures and enabled the reconstruction of TE cell wall architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号