共查询到20条相似文献,搜索用时 0 毫秒
1.
Conditions of electroporation were optimized for introduction of tobacco mosaic virus (TMV) particles into tobacco mesophyll protoplasts (Nicotiana tabacum L. cv. Petit Havana SR1). Compared with conditions for TMV-RNA uptake, a longer electric pulse was necessary at the same voltage to induce TMV particle entry. Up to 80–90% of the protoplasts were infected with TMV particles after exposure to a 10 msec pulse at 200 V (0.67 KV/cm) in a 0.5 M mannitol solution. Protoplast viability was slightly lower than for controls which did not undergo electroporation. The presence of buffer in the mannitol solution reduced the net voltage in the solution which resulted in a significant decrease of the level of infection. These results suggest that the membrane pores resulting from an electrical pulse were wide enough for TMV particles (300 × 18 nm) to enter protoplasts. 相似文献
2.
N. A. Byzova I. V. Safenkova S. N. Chirkov A. V. Zherdev A. N. Blintsov B. B. Dzantiev I. G. Atabekov 《Applied Biochemistry and Microbiology》2009,45(2):204-209
Express immunochromatographic test-strip assays were developed for detection of five plant viruses varying in shape and size of virions: spherical carnation mottle virus, bean mild mosaic virus, rodshaped tobacco mosaic virus, and filamentous potato viruses X and Y. Multimembrane composites (test strips) with immobilized polyclonal antibodies against viruses and colloidal gold-conjugated antibodies were used for the analysis. The immunochromatographic test strips were shown to enable the detection of viruses both in purified preparations and in leaf extracts of infected plants with a sensitivity from 0.08 to 0.5 μg/ml for 10 min. The test strips may be used for express diagnostics of plant virus diseases in field conditions. 相似文献
3.
Conditions were established for the introduction of both tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) RNAs into tobacco mesophyll protoplasts by electroporation. The proportion of infected protoplasts was quantified by staining with viral coat protein-specific antibodies conjugated to fluorescein isothiocyanate. Approximately 30–40% of the protoplasts survived electroporation. Under optimal conditions, up to 75% of these were infected with TMV-RNA. Successful infection was demonstrated in 19 out of 20 experiments. Optimal infection was achieved with several direct current pulses of 90 sec at a field strength of 5 to 10 kV/cm. Changing the position of the protoplasts within the chamber between electric pulses was essential for achievement of high rates of infection. Optimal viral RNA concentration was about 10 g/ml in a solution of 0.5 M mannitol without buffer salts. 相似文献
4.
Tobacco mosaic virus (TMV) causes significant yield loss in susceptible crops irrigated with contaminated water. However, detection of TMV in water is difficult owing to extremely low concentrations of the virus. Here, we developed a simple method for the detection and quantification of TMV in irrigation water. TMV was reliably detected at concentrations as low as 10 viral copies/μL with real-time PCR. The sensitivity of detection was further improved using polyethylene glycol 6000 (PEG6000, MW 6000) to concentrate TMV from water samples. Among the 28 samples from Shaanxi Province examined with our method, 17 were tested positive after virus concentration. Infectivity of TMV in the original water sample as well as after concentration was confirmed using PCR. The limiting concentration of TMV in water to re-infect plants was determined as 102 viral copies/mL. The method developed in this study offers a novel approach to detect TMV in irrigation water, and may provide an effective tool to control crop infection. 相似文献
5.
6.
7.
8.
9.
10.
11.
A novel proteinase inhibitor gene transiently induced by tobacco mosaic virus infection 总被引:5,自引:0,他引:5
A gene (NgPI) encoding a novel proteinase inhibitor (PI) has been isolated from tobacco leaves. Protein encoded by the gene consists of 241 amino acid residues having a predicted molecular mass of 26.7 kDa and a calculated pI of 8.7. A predicted N-terminal signal sequence followed by a vacuolar targeting signal and a peptide conserved in the Kunitz type PIs were identified. The deduced NgPI protein has sequence homology with aspartic and cysteine protease inhibitors. The gene is present as double copies in the Nicotiana glutinosa genome. Expression of the NgPI gene is rapidly and transiently induced by tobacco mosaic virus infection at a time earlier than apparent lesions of hypersensitive responses appear on the leaves. 相似文献
12.
13.
Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection 总被引:7,自引:8,他引:7 下载免费PDF全文
Peroxidases (EC 1.11.1.7) have been implicated in the responses of plants to physical stress and to pathogens, as well as in a variety of cellular processes including cell wall biosynthesis. Tissue samples from leaf, root, pith, and callus of Nicotiana tabacum were assayed for specific peroxidase isozymes by analytical isoelectric focusing. Each tissue type was found to exhibit a unique isozyme fingerprint. Root tissue expressed all of the detectable peroxidase isozymes in the tobacco plant, whereas each of the other tissues examined expressed a different subset of these isozymes. In an effort to determine which peroxidase isozymes from Nicotiana tabacum are involved in cell wall biosynthesis or other normal cellular functions and which respond to stress, plants were subjected to either wounding or infection with tobacco mosaic virus. Wounding the plant triggered the expression of several cationic isozymes in the leaf and both cationic and anionic isozymes in pith tissue. Maximum enzyme activity was detected at 72 hours after wounding, and cycloheximide treatment prevented this induction. Infection of tobacco with tobacco mosaic virus induced two moderately anionic isozymes in the leaves in which virus was applied and also systemically induced in leaves which were not inoculated with virus. 相似文献
14.
Calcium ion titrations were performed on solutions of tobacco mosaic virus using a calcium-specific ion-exchange electrode. Scatchard analyses were used to obtain the number of calcium ion binding sites per protein subunit (n) and the apparent stability constant for complex formation (beta' Ca). These experiments were performed on unbuffered solutions, in either water or 0.01 M-KCl, to allow a determination of the number of hydrogen ions released per calcium ion bound (chi). The results indicate that near neutrality, the virus particle possesses two calcium ion binding sites per subunit having apparent stability constants greater than 10(4) M-1. The results are interpreted as if these two sites are non-identical and titrate independently. The higher affinity site for the virus in water has a value of log beta' Ca, which varies from about 8.5 at pH 8.5 to about 3.9 at pH 5.0, and for the virus in 0.01 M-KCl has a value that varies from about 6.2 at pH 8.0 to about 3.7 at pH 5.5. The higher affinity site for the virus in water binds up to two competing hydrogen ions, one with an apparent pKH value greater than 8.5 and the other with a value that varies from 6.0 at pH 5.5 to 7.3 at pH 8.0. For the virus in 0.01 M-KCl, only the competing hydrogen ion binding with an apparent pKH value greater than 8.5 remains. The results could be interpreted as indicating that the electrical charge on the virus particle has a constant value in the pH range 5.5 to 8.0 despite the fact that hydrogen ion titration curves for the intact virus particle indicate that the charge should vary from about -1 per subunit at pH 5.5 to about -4 at pH 8.0. 相似文献
15.
The susceptibility factor TOBAMOVIRUS MULTIPLICATION 1 (TOM1) is required for efficient multiplication of tobacco mosaic virus (TMV). Although some phylogenetic and functional analyses of the TOM1 family members have been conducted, a comprehensive analysis of the TOM1 homologues based on phylogeny from the most ancient to the youngest representatives within the plant kingdom, analysis of support for tobamovirus accumulation and interaction with other host and viral proteins has not been reported. In this study, using Nicotiana benthamiana and TMV as a model system, we functionally characterized the TOM1 homologues from N. benthamiana and other plant species from different plant lineages. We modified a multiplex genome editing tool and generated a sextuple mutant in which TMV multiplication was dramatically inhibited. We showed that TOM1 homologues from N. benthamiana exhibited variable capacities to support TMV multiplication. Evolutionary analysis revealed that the TOM1 family is restricted to the plant kingdom and probably originated in the Chlorophyta division, suggesting an ancient origin of the TOM1 family. We found that the TOM1 family acquired the ability to promote TMV multiplication after the divergence of moss and spikemoss. Moreover, the capacity of TOM1 orthologues from different plant species to promote TMV multiplication and the interactions between TOM1 and TOM2A and between TOM1 and TMV-encoded replication proteins are highly conserved, suggesting a conserved nature of the TOM2A–TOM1–TMV Hel module in promoting TMV multiplication. Our study not only revealed a conserved nature of a gene module to promote tobamovirus multiplication, but also provides a valuable strategy for TMV-resistant crop development. 相似文献
16.
The possibility of infection of tobacco upper leaves with tobacco mosaic virus (TMV) was examined in experiments where the inoculum was imbibed through the cut stem. The inoculum used were: a) a preparation of a virus-specific informosome-like ribonucleoproteins (vRNP) isolated from TMV-infected plants; b) a TMV preparation; or c) a mixture of TMV and vRNP. Multiplication of TMV in upper leaves was observed in neither of the variants; nevertheless in the vascular tissue and/or probably in adjoining parenchymal cells, two kinds of RNA were synthesized: of mol. w. (1.1--1.3) X 10(6) and (0.6--0.8) X 10(6). These RNA were not found in healthy plants in the presence of actinomycin D. The synthesis of genomic TMV RNA is suppressed under these conditions. Thus, some kind of abortive TMV infection takes place under the condition of experimental inoculation of plants through a cut stem. Molecular hybridization with the DNA of recombinant plasmid containing a nucleotide sequence complementary to the 3'-portion of genomic TMV RNA proves that short RNAs synthesized under the abortive infection conditions are TMV-specific. The experiments with differential temperature treatment of N-gene-containing plants under abortive infection conditions suggest that necrotization is not necessarily induced by genomic TMV RNA synthesis. 相似文献
17.
18.
19.
20.
Summary. The intercellular communication by plasmodesmata (PD) is important for the growth and development of plants, and the transport
of macromolecules through PD is likely to be regulated by developmental signals. While PD in the apical meristem transport
macromolecules such as mRNAs, the branched PD in the mature leaf do not transport large macromolecules freely. The changes
in PD during development might be important for sink-to-source changes in leaves, but the molecular mechanism is still unknown.
Movement proteins (MPs) of the tobacco mosaic virus localize in the branched PD and increase the size exclusion limit, allowing
transport of viral RNA. We developed a method for differential extraction of MP from isolated cell walls of transgenic tobacco
leaves expressing MP or MP tagged with green-fluorescent protein. Lithium chloride at a concentration of 8 M removed filamentous
structures in branched PD, the possible attachment site of MP. As some endogenous proteins were coeluted with MP by the treatment,
this extraction method might be a powerful tool for investigating MP-interacting proteins in branched PD.
Correspondence and reprints: Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba
3-8-1, Meguro-ku, Tokyo 153-8902, Japan. 相似文献