首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Translin is a nucleic acid binding protein that has been implicated in regulating the targeting and translation of dendritic RNA. In previous studies, we found that Translin and its partner protein, Trax, are components of a gel-shift complex that is highly enriched in brain extracts. In those studies, we employed a DNA oligonucleotide, GS1, as a probe to label the complex. Translin has also been identified as a component of a gel-shift complex detected using an RNA oligonucleotide probe, derived from the 3' UTR of protamine-2 mRNA. Although we had assumed that these probes labeled the same complex, recent studies indicate that association of Trax with Translin suppresses its RNA binding activity. As these findings challenge this assumption and suggest that the native RNA binding complex does not contain Trax, we have re-examined this issue. We have found that the gel-shift complexes labeled with either GS1 or protamine-2 probes are "supershifted" by addition of Trax antibodies, indicating that both are heteromeric Translin/Trax complexes. In addition, cross-competition studies provide additional evidence that these probes label the same complex. Furthermore, analysis of recombinant Translin/Trax complexes generated by co-transfection of Trax with Translin in hEK293T demonstrates that they are labeled with either probe. Although recombinant Translin forms a homomeric nucleic acid binding complex in vitro, our findings indicate that both Trax and Translin are components of the native gel-shift complex labeled with either GS1 or protamine-2 probes.  相似文献   

2.
Recent studies implicating dendritic protein synthesis in synaptic plasticity have focused attention on identifying components of the molecular machinery involved in processing dendritic RNA. Although Translin was originally identified as a protein capable of binding single-stranded DNA, subsequent studies have demonstrated that it also binds RNA in vitro. Because previous studies indicated that Translin-containing RNA/single-stranded DNA binding complexes are highly enriched in brain, we and others have proposed that it may be involved in dendritic RNA processing. To assess this possibility, we have conducted studies aimed at defining the localization of Translin and its partner protein, Trax, in brain. In situ hybridization studies demonstrated that both Translin and Trax are expressed in neurons with prominent staining apparent in cerebellar Purkinje cells and neuronal layers of the hippocampus. Subcellular fractionation studies demonstrated that both Translin and Trax are highly enriched in the cytoplasmic fraction compared with nuclear extracts. Furthermore, immunohistochemical studies with Translin antibodies revealed prominent staining in Purkinje neuron cell bodies that extends into proximal and distal dendrites. A similar pattern of somatodendritic localization was observed in hippocampal and neocortical pyramidal neurons. These findings demonstrate that Translin is expressed in neuronal dendrites and therefore support the hypothesis that the Translin/Trax complex may be involved in dendritic RNA processing.  相似文献   

3.
4.
Claussen M  Koch R  Jin ZY  Suter B 《Genetics》2006,174(3):1337-1347
The vertebrate RNA and ssDNA-binding protein Translin has been suggested to function in a variety of cellular processes, including DNA damage response, RNA transport, and translational control. The Translin-associated factor X (Trax) interacts with Translin, and Trax protein stability depends on the presence of Translin. To determine the function of the Drosophila Translin and Trax, we generated a translin null mutant and isolated a trax nonsense mutation. translin and trax single and double mutants are viable, fertile, and phenotypically normal. Meiotic recombination rates and chromosome segregation are also not affected in translin and trax mutants. In addition, we found no evidence for an increased sensitivity for DNA double-strand damage in embryos and developing larvae. Together with the lack of evidence for their involvement in DNA double-strand break checkpoints, this argues against a critical role for Translin and Trax in sensing or repairing such DNA damage. However, Drosophila translin is essential for stabilizing the Translin interaction partner Trax, a function that is surprisingly conserved throughout evolution. Conversely, trax is not essential for Translin stability as trax mutants exhibit normal levels of Translin protein.  相似文献   

5.
6.
Trax, expressed alone aggregates into insoluble complexes, whereas upon co-expression with Translin becomes readily soluble and forms a stable heteromeric complex ( approximately 430 kDa) containing both proteins at nearly equimolar ratio. Based on the subunit molecular weights, estimated by MALDI-TOF-MS, the purified complex appears to comprise of either an octameric Translin plus a hexameric Trax (calculated MW 420 kDa) or a heptamer each of Trax and Translin (calculated MW 425 kDa) or a hexameric Translin plus an octameric Trax (calculated MW 431 kDa). The complex binds single-stranded/double-stranded DNA. ssDNA gel-shifted complex shows both proteins at nearly equimolar ratio, suggesting that Translin "chaperones" Trax and forms heteromeric complex that is DNA binding competent.  相似文献   

7.
8.
Abstract: In previous gel-shift assays, we identified a protein complex, referred to as GS1, that binds in a sequence-specific manner to single-stranded DNA and is highly enriched in brain. As an initial step in clarifying the function of this complex, we have undertaken studies aimed at defining its protein components. In particular, we focused on identifying two protein bands that were covalently labeled when the GS1-DNA complex was subjected to UV irradiation to induce cross-linking between the radiolabeled probe and GS1 components. By following GS1 binding activity through a series of conventional chromatographic steps, as well as an affinity column based on the DNA oligonucleotide used for gel-shift assays, we were able to achieve ∼500,000-fold enrichment of GS1 compared with that in crude cerebellar extracts used as starting material. This highly purified fraction contained both protein bands detected by UV cross-linking in crude extracts. Sequencing of peptides derived from these proteins led to their identification as Translin and Trax, interacting proteins identified in studies of DNA recombination in lymphocytes. A distinct line of research has provided evidence that a complex containing Translin can bind to specific mRNAs and block their translation. Whether one or both of these proposed functions of the Translin/Trax complex explains the high basal level of GS1 binding activity present in the brain remains to be determined.  相似文献   

9.
Trax (Translin-associated factor X) has been shown to interact with TB-RBP/Translin by its coimmunoprecipitation and in yeast two-hybrid assays. Here we demonstrate that Trax is widely expressed, does not bind to DNA or RNA, but forms heterodimers with TB-RBP under reducing conditions. The heterodimer of TB-RBP and Trax inhibits TB-RBP binding to RNA, but enhances TB-RBP binding to specific single stranded DNA sequences. The in vitro interactions between TB-RBP and Trax are confirmed by similar interactions in the yeast two-hybrid system. Cell fractionation and confocal microscope studies reveal that Trax is predominantly cytoplasmic. In contrast, TB-RBP is present in both the nuclei and cytoplasm of transfected cells and uses a highly conserved nuclear export signal to exit nuclei. In addition to a leucine zipper, two basic domains in TB-RBP are essential for RNA binding, but only one of these domains is needed for DNA binding. Trax restores DNA binding to TB-RBP containing an altered form of this domain. These data suggest that Trax-TB.RBP interactions modulate the DNA- and RNA-binding activity of TB-RBP.  相似文献   

10.
The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by ~50% and the poorly hydrolyzed GTP analog, GTPγS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBPGTP and TB-RBPGTP no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBPGTP will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBPGTP into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBPGTP in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.  相似文献   

11.
12.
13.
X Q Wu  S Lefrancois  C R Morales  N B Hecht 《Biochemistry》1999,38(35):11261-11270
Numerous functions have been proposed for the testis brain RNA-binding protein (TB-RBP) and its human homologue, Translin, ranging from mRNA transport and translational regulation to DNA rearrangement and repair. To gain insight into the likely functions of this 26 kDa protein, immunoprecipitation was used to identify proteins that interact with TB-RBP in mouse cytosolic extracts. Three proteins, the transitional endoplasmic reticulum ATPase, a cytoskeletal gamma actin, and Trax, were specifically immunoprecipitated with an affinity-purified antibody to recombinant mouse TB-RBP. In vitro binding assays with recombinant proteins and EM immunocytochemistry confirm that TB-RBP interacts with the TER ATPase in vitro and in vivo. Confocal microscopy has demonstrated that TB-RBP colocalizes with actin in the cytoplasm of male germ cells. The immunoprecipitation of Trax with TB-RBP confirms a published report demonstrating protein interactions between the two proteins in a yeast two-hybrid assay. These data support the hypothesis that TB-RBP serves as a link in attaching specific mRNAs to cytoskeletal structures and suggests an involvement for the ubiquitously expressed TER ATPase in intracellular and/or intercellular mRNA transport.  相似文献   

14.
During oogenesis, maternal mRNAs are synthesised and stored in a translationally dormant form due to the presence of regulatory elements at the 3' untranslated regions (3'UTR). In Xenopus oocytes, several studies have described the presence of RNA-binding proteins capable to repress maternal-mRNA translation. The testis-brain RNA-binding protein (TB-RBP/Translin) is a single-stranded DNA- and RNA-binding protein which can bind the 3' UTR regions (Y and H elements) of stored mRNAs and can suppress in vitro translation of the mRNAs that contain these sequences. Here we report the cloning of the Xenopus homologue of the TB-RBP/Translin protein (X-translin) as well as its expression, its localisation, and its biochemical association with the protein named Translin associated factor X (Trax) in Xenopus oocytes. The fact that this protein is highly present in the cytoplasm from stage VI oocytes until 48 h embryos and that it has been described as capable to inhibit paternal mRNA translation, indicates that it could play an important role in maternal mRNA translation control during Xenopus oogenesis and embryogenesis. Moreover, we investigated X-translin localisation during cell cycle in XTC cells. In interphase, although a weak and diffuse nuclear staining was observed, X-translin was mostly present in the cytoplasm where it exhibited a prominent granular staining. Interestingly, part of X-translin underwent a remarkable redistribution throughout mitosis and associated with centrosomes, which may suggest a new unknown role for this protein in cell cycle.  相似文献   

15.
Translin is a highly conserved mammalian RNA and DNA-binding protein involved in DNA recombination and RNA trafficking. Crystal structures of mouse and human translin have been solved, but do not provide information about nucleic acid binding or recognition. Translin has a partner protein, translin-associated factor x (trax), which is believed to regulate translin’s subcellular locale and affinity for certain RNA and DNA sequences. Here we present a comparative study of recombinant translin and translin-trax complex binding to specific RNA and DNA sequences. It was observed that translin preferentially binds to G-rich RNA sequences whereas translin-trax preferentially binds G-rich DNA sequences. Translin can bind mRNA sequences with sub-micromolar Kd values, and the complex with trax can bind G-rich DNA with similar affinity. We conclude that trax acts to regulate translin’s RNA and DNA binding affinities as part of a cellular RNA trafficking mechanism.  相似文献   

16.
Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin–TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin–TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes 15N and 14N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein–protein interactions and provides a clear distinction between false positive vs. truly interacting proteins.  相似文献   

17.
18.
A golgin family protein, Mea2, is expressed at enhanced level in pachytene spermatocytes and is indispensable for mouse spermatogenesis. Because Trax was shown to interact with Mea2 in yeast two-hybrid, we investigated the localization of Trax in pachytene spermatocytes with immunofluorescent staining. Trax was found to accumulate in the Golgi complex of mid-late pachytene spermatocytes and intermingled with granular Mea2 signal in the central region. In a subline of the Mea2 mutant mouse, a truncated form of Mea2 devoid of the N-terminal region, DeltaMea2, was expressed. It localized to the rim of Golgi complex and thus occupied a region separate from that of Trax.  相似文献   

19.
Translin is thought to participate in a variety of cellular activities including chromosomal translocations, translational regulation of mRNA expression, and mRNA transport. It forms an octameric ring structure capable of sequence-specific binding of both DNA and RNA substrates. We have used electron microscopy and single-particle image analysis to generate a three-dimensional reconstruction of the Translin ring. The subunits appear to have two distinct domains that assemble to form an open channel with diameter of approximately 30 A at one end and approximately 50 A at the opposite end. In the presence of either DNA or RNA containing consensus binding sequences, the largest opening into the central cavity is filled with density. Strikingly, although Translin shows significant sequence homology to only one other protein, Translin-associated factor X, the quaternary organization and the dimerization of subunits in the ring are very similar to those observed for hexameric ring helicases. This suggests that many of the structures in DNA and RNA metabolism may have similar quaternary organization.  相似文献   

20.
Translin, a ubiquitous RNA/DNA-binding protein that forms a hetero-octamer together with Translin-associated factor X (TRAX), possesses endoribonuclease activity and plays a physiological role in restricting the size and differentiation of mesenchymal precursor cells. However, the precise role of Translin in epithelial cells remains unclear. Here, we show evidence that Translin restricts the growth of pubertal mammary epithelial cells. The mammary epithelia of Translin-null females exhibited retarded growth before puberty, but highly enhanced growth and DNA synthesis with increased ramification after the onset of puberty. Primary cultures of Translin-null mammary epithelial cells showed augmented DNA synthesis in a ligand-independent and ligand-enhanced manner. Translin-null ovariectomized mice implanted with slow-release estrogen pellets showed enhanced length and ramification of the mammary glands. Mammary epithelial growth was also observed in ovariectomized Translin-null mice implanted with placebo pellets. Luciferase reporter assays using embryonic fibroblasts from Translin-null mice showed unaltered estrogen receptor α function. These results indicate that Translin plays a physiological role in restricting intrinsic growth, beyond mesenchymal cells, of pubertal mammary epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号