首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies.  相似文献   

5.
Compared to rice, wheat exhibits characteristic growth habits and contains complex genome constituents. To assess global changes in gene expression patterns in the wheat life cycle, we conducted large-scale analysis of expressed sequence tags (ESTs) in common wheat. Ten wheat tissues were used to construct cDNA libraries: crown and root from 14-day-old seedlings; spikelet from early and late flowering stages; spike at the booting stage, heading date and flowering date; pistil at the heading date; and seeds at 10 and 30 days post-anthesis. Several thousand colonies were randomly selected from each of these 10 cDNA libraries and sequenced from both 5' and 3' ends. Consequently, a total of 116 232 sequences were accumulated and classified into 25 971 contigs based on sequence homology. By computing abundantly expressed ESTs, correlated expression patterns of genes across the tissues were identified. Furthermore, relationships of gene expression profiles among the 10 wheat tissues were inferred from global gene expression patterns. Genes with similar functions were grouped with one another by clustering gene expression profiles. This technique might enable estimation of the functions of anonymous genes. Multidimensional analysis of EST data that is analogous to the microarray experiments may offer new approaches to functional genomics of plants.  相似文献   

6.
7.
The DNA sequence of 106 BAC/PAC clones in the minimum tiling path (MTP) of the long arm of rice chromosome 11, between map positions 57.3 and 116.2 cM, has been assembled to phase 2 or PLN level. This region has been sequenced to 10× redundancy by the Indian Initiative for Rice Genome Sequencing (IIRGS) and is now publicly available in GenBank. The region, excluding overlaps, has been predicted to contain 2,932 genes using different software. A gene-by-gene BLASTN search of the NCBI wheat EST database of over 420,000 cDNA sequences revealed that 1,143 of the predicted rice genes (38.9%) have significant homology to wheat ESTs (bit score 100). Further BLASTN search of these 1,143 rice genes with the GrainGenes database of sequence contigs containing bin-mapped wheat ESTs allowed 113 of the genes to be placed in bins located on wheat chromosomes of different homoeologous groups. The largest number of genes, about one-third, mapped to the homoeologous group 4 chromosomes of wheat, suggesting a common evolutionary origin. The remaining genes were located on wheat chromosomes of different groups with significantly higher numbers for groups 3 and 5. Location of bin-mapped wheat contigs to chromosomes of all the seven homoeologous groups can be ascribed to movement of genes (transpositions) or chromosome segments (translocations) within rice or the hexaploid wheat genomes. Alternatively, it could be due to ancient duplications in the common ancestral genome of wheat and rice followed by selective elimination of genes in the wheat and rice genomes. While there exists definite conservation of gene sequences and the ancestral chromosomal identity between rice and wheat, there is no obvious conservation of the gene order at this level of resolution. Lack of extensive colinearity between rice and wheat genomes suggests that there have been many insertions, deletions, duplications and translocations that make the synteny comparisons much more complicated than earlier thought. However, enhanced resolution of comparative sequence analysis may reveal smaller conserved regions of colinearity, which will facilitate selection of markers for saturation mapping and sequencing of the gene-rich regions of the wheat genome.  相似文献   

8.
9.
10.
EST derived SSR markers for comparative mapping in wheat and rice   总被引:18,自引:0,他引:18  
Structural and functional relationships between the genomes of hexaploid wheat (Triticum aestivum L.) (2n=6x=42) and rice (Oryza sativa L.) (2n=2x=24) were evaluated using linkage maps supplemented with simple sequence repeat (SSR) loci obtained from publicly available expressed sequence tags (ESTs). EST-SSR markers were developed using two main strategies to design primers for each gene: (1) primer design for multiple species based on supercluster analysis, and (2) species-specific primer design. Amplification was more consistent using the species-specific primer design for each gene. Forty-four percent of the primers designed specifically for wheat sequences were successful in amplifying DNA from both species. Existing genetic linkage maps were enhanced for the wheat and rice genomes using orthologous loci amplified with 58 EST-SSR markers obtained from both wheat and rice ESTs. The PCR-based anchor loci identified by these EST-SSR markers support previous patterns of conservation between wheat and rice genomes; however, there was a high frequency of interrupted colinearity. In addition, multiple loci amplified by these primers made the comparative analysis more difficult. Enhanced comparative maps of wheat and rice provide a useful tool for interpreting and transferring molecular, genetic, and breeding information between these two important species. These EST-SSR markers are particularly useful for constructing comparative framework maps for different species, because they amplify closely related genes to provide anchor points across species.Communicated by R. Hagemann  相似文献   

11.
Root-knot nematodes are obligatory sedentary endoparasites that require a plant host to complete their life cycle. To understand the functions of Meloidogyne incognita nematode genes transcribed from eggs and second-stage juveniles (J2), we have constructed a normalized full-length M. incognita cDNA library and analyzed the ESTs using Pendant-Pro Sequence Analysis Suite. The 5,832 M. incognita ESTs formed 3,263 clusters and 2,241 singletons. The sequences ranged from 51 to 1,740 base pairs, and their average size was 699 base pairs. The protein length of M. incognita ESTs ranged from 150 to 299 amino acids. Forty contigs of predicted proteins that were grouped by BLASTP identity values had significant homology to the genes expressed in their organelle structures (cuticle, epidermis, extracellular matrix and muscle). Using the gomerger method of contigs, we could functionally assign GO terms to 2,147 (53.4%) of 4,024 contigs. Following the E.C. numbers method using UniProt database hits, we could functionally classify E.C. numbers to 288 (7.2%) of 4024 contigs. Also, the taxonomy was classified to 2,329 (57.9%) of 4,024 contigs. We could predict transmembrane regions of 4,024 clusters using the TMpred algorithm. Of the 4,024 contigs with transmembrane regions, 1,457 (36.2%) were assigned more than one domain, and 2,567 (63.8%) could not be assigned a transmembrane domain. The M. incognita ESTs will provide a foundation for developing novel target genes for parasite control and contribute to accelerating the research of biologically-related species.  相似文献   

12.
The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.  相似文献   

13.
青杄均一化cDNA文库构建及EST序列分析   总被引:1,自引:0,他引:1  
以青杄花粉和针叶为材料,将青杄全长cDNA与Gateway供体载体pDONR222重组,构建了其非剪切型全长cDNA原始文库,利用基因组DNA饱和杂交技术对原始cDNA文库进行均一化处理,构建青杄的均一化全长cDNA文库。文库的总库容量为1.1×106CFU/mL,平均插入片段长度大于1.0 kb,重组率大于95%。定量RT-PCR检测表明,青杄高丰度表达基因EF1-α在均一化cDNA文库中的表达量下降了约41倍。接着对文库中随机的5 144个克隆进行了测序,获得高质量的有效EST(expressedsequence tag)序列为5 144条,经拼接共获得单一基因(unigene)为2 717个,其中包括片段重叠群(contig)628个和单一EST序列(singlet)2 089个。NCBI同源比对分析表明,其中1 887个序列unigenes获得分子功能注释,这些EST涉及细胞生长、信号转导、转录、抗逆、能量代谢等功能。这些数据有助于对青杄的相关功能蛋白及分子机制开展进一步的研究。  相似文献   

14.
15.
16.
《DNA research》2008,15(6):333-346
A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome.Key words: EST, full-length cDNA, functional annotation, legume, soybean  相似文献   

17.
18.
To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.  相似文献   

19.
20.
A white spruce gene catalog for conifer genome analyses   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号