首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
RAPD, RFLP, nuclear SSLP and chloroplast SSLP analyses were carried out to clarify the phylogenetic relationships among A-genome species of rice. In total, 12 cultivars of Oryza sativa (4 Japonica, 3 Javanica and 5 Indica), one cultivar of O. glaberrima, and 17 wild accessions (12 O. rufipogon, 2 O. glumaepatula, 1 O. longistaminata, 1 O. meridionalis and 1 O. barthii) were used. Their banding patterns were scored and compared to evaluate the similarity between accessions. Genetic differentiation within and between taxa was examined based on the average similarity indices. Except for chloroplast SSLP analysis, the average similarities were higher within O. sativa than within O. rufipogon, and O. sativa Indica had greater intrasubspecific variation than Japonica and Javanica. Comparisons between cultivated and wild species showed that O. sativa was closely related to O. rufipogon, while O. glaberrima was closely related to O. barthii. This indicated that two cultivated species, O. sativa and O. glaberrima, originated from O. rufipogon and O. barthii, respectively. Domestication of O. sativa seemed to be diphyletic, since strong similarity was observed between O. sativa Japonica-Javanica and O. rufipogon from China and between O. sativa Indica and O. rufipogon from tropical Asia. In addition, dendrograms for RAPD, RFLP, and nuclear and chloroplast SSLP analyses were constructed to reveal the overall genetic relationships among A-genome species. In all analyses, O. sativa and O. glaberrima formed groups with O. rufipogon and O. barthii, respectively. However, their manners of clustering with other wild species were not the same. The results of RAPD and RFLP analyses indicate that O. glumaepatula was relatively close to the groups of O. sativa and O. glaberrima whereas O. longistaminata and O. meridionalis were highly differentiated from other A-genome species. On the other hand, clear interspecific relationships were not obtained by nuclear or chloroplast SSLP analyses.  相似文献   

2.
CACTA is a class 2 transposon, that is very abundantly present in plant genomes. Using Rim2/Hipa CACTA transposon display (hereafter Rim2/Hipa-TD), we analyzed several A-genome diploid Oryza species that have a high distribution of the CACTA motifs. High levels of polymorphism were detected within and between the Oryza species. The African taxa, O. glaberrima and O. barthii, both showed lower levels of polymorphism than the Asian taxa, O. sativa, O. rufipogon, and O. nivara. However, O. longistaminata, another African taxon, showed levels of polymorphism that were similar to the Asian taxa. The Latin American taxon, O. glumaepatula, and the Australian taxon, O. meridionalis, exhibited intermediate levels of polymorphism between those of the Asian and African taxa. The lowest level of polymorphism was observed in O. glaberrima (32.1%) and the highest level of polymorphism was observed in O. rufipogon (95.7%). The phylogenetic tree revealed three major groups at the genetic similarity level of 0.409. The first group consisted of three Asian taxa, O. sativa, O. rufipogon and O. nivara. The second group consisted of three African taxa, O. glaberrima, O. barthii, O. longistaminata, and an American taxon, O. glumaepatula. The third group contained an Australian taxon, O. meridionalis. The clustering patterns of these species matched well with their geographical origins. Rim2/Hipa-TD appears to be a useful marker system for studying the genetic diversity and species relationships among the AA diploid Oryza species.  相似文献   

3.
It is generally accepted that Oryza rufipogon is the progenitor of Asian cultivated rice (O. sativa). However, how the two subspecies of O. sativa (indica and japonica) were domesticated has long been debated. To investigate the genetic differentiation in O. rufipogon in relation to the domestication of O. sativa, we developed 57 subspecies-specific intron length polymorphism (SSILP) markers by comparison between 10 indica cultivars and 10 japonica cultivars and defined a standard indica rice and a standard japonica rice based on these SSILP markers. Using these SSILP markers to genotype 73 O. rufipogon accessions, we found that the indica alleles and japonica alleles of the SSILP markers were predominant in the O. rufipogon accessions, suggesting that SSILPs were highly conserved during the evolution of O. sativa. Cluster analysis based on these markers yielded a dendrogram consisting of two distinct groups: one group (Group I) comprises all the O. rufipogon accesions from tropical (South and Southeast) Asia as well as the standard indica rice; the other group (Group II) comprises all the O. rufipogon accessions from Southern China as well as the standard japonica rice. Further analysis showed that the two groups have significantly higher frequencies of indica alleles and japonica alleles, respectively. These results support the hypothesis that indica rice and japonica rice were domesticated from the O. rufipogon of tropical Asia and from that of Southern China, respectively, and suggest that the indica-japonica differentiation should have formed in O. rufipogon long before the beginning of domestication. Furthermore, with an O. glaberrima accession as an outgroup, it is suggested that the indica-japonica differentiation in O. ruffpogon might occur after its speciation from other AA-genome species.  相似文献   

4.
Primer pairs flanking ten chloroplast microsatellite loci, originally identified in Oryza sativa cv Nipponbare, were evaluated for amplification and allelic diversity using a panel of 13 diverse cultivars of rice (O. sativa), 19 accessions of wild rice (three O. officinalis, five O. latifolia, five O. minuta, four O. australiensis, one O. brachyantha and one O. ridleyi) and eight other Gramineae species (maize, teosinte, wheat, oat, barley, pearl millet, sorghum and sugarcane). Amplified products were obtained for all samples at nine out of ten loci. Among the rice cultivars, the number of alleles per locus ranged from one to four, with monomorphic patterns observed at five loci. The average polymorphism information content (PIC) value at the other five (polymorphic) loci was 0.54 among the 13 cultivars. When wild rice and the other Gramineae species were compared based on the proportion of shared alleles, their phylogenetic relationships were in agreement with previous studies using different types of markers; however, the magnitude of the differences based on chloroplast microsatellites underestimated the genetic distance separating these divergent species and genera. A sequence-based comparison of homologous regions of the rice and maize chloroplast genomes revealed that, while a high level of microsynteny is evident, the occurrence of actively evolving microsatellite motifs in specific regions of the rice chloroplast genome appears to be mainly a species or genome-specific phenomenon. Thus the chloroplast primer pairs used in this study bracketed mutationally active microsatellite motifs in rice but degenerate, interrupted motifs or highly conserved, mutationally inert motifs in distantly related genera. Received: 17 March 1999 / Accepted: 11 November 1999  相似文献   

5.
段世华  李绍清  李阳生  熊云  朱英国 《遗传》2007,29(4):455-461
水稻线粒体基因组嵌合基因orf79 和 orfH79分别被认为与BT-型和HL-型水稻CMS有关, 两者具有98%的同源性, 并且其DNA序列只存在4核苷酸的差异。对于这两个嵌合基因, 前者来源于栽培稻(Oryza. sativa L.), 而后者则来源于普通野生稻(O. rufipogon Griff.)。这意味着orf79/ orfH79可能在广泛分布于稻属AA基因组中。为了调查orf79/ orfH79在稻属物种中的分布和变异, 190份栽培稻品系[包括156份亚洲栽培稻(O. sativa var. landrace)和34份非洲栽培稻(O. glaberrima)]以及104份稻属AA基因组野生稻品系(包括O. rufipogon、O.nivara、O. glumaepatula、O. barthii、O. longistaminata和O. meridionalis 6个种), 被用于PCR扩增检测。31份具有控制粤泰A和笹锦A的特异片段的稻属AA基因组水稻品系被检测出。所有特异片段均被回收并测序, 基于DNA 序列的聚类结果显示31份水稻材料被分成了两组, 分别代表为BT-型和HL-型水稻不育细胞质组群。结果也进一步表明: HL-型水稻CMS胞质主要分布于一年生的O. nivara中; BT-型水稻CMS胞质可能来源于栽培稻变种或多年生野生稻O. rufipogon。  相似文献   

6.
The advantage of the cross transferability of heterologous chloroplast and nuclear microsatellite primers was taken to detect polymorphism among 24 tea (Camellia sinensis (L.) O. Kuntze) genotypes, including both the assamica and the sinensis varieties. Primer information was obtained from the closely related Camellia japonica species for four nuclear microsatellites, and from Nicotiana tabaccum for seven universal chloroplast microsatellites. All of the nuclear microsatellite loci tested generated an expected DNA fragment in tea, revealing between three and five alleles per locus. Four out of the seven chloroplast microsatellites primers amplified positively, and of these only one was polymorphic with three alleles, which is in agreement with the conserved nature of chloroplast microsatellites at the intraspecific level. A factorial correspondence analysis carried out on all genotypes and nuclear microsatellite alleles separated the assamica and sinensis genotypes into two groups, thus demonstrating the value of these markers in establishing the genetic relationship between tea varieties. Genetic diversity measured with nuclear microsatellites was higher than that measured with other types of molecular markers, offering prospects for their use in fingerprinting, mapping, and population genetic studies, whereas polymorphisms detected at a cpSSR locus will allow the determination of plastid inheritance in the species.  相似文献   

7.
Phylogenetic relationships in the genus Oryza based on mitochondrial RFLPs.   总被引:1,自引:0,他引:1  
Restriction fragment length polymorphism (RFLP) of mitochondrial DNA in the genus Oryza was surveyed using 20 accessions including 11 species and a single endonuclease, EcoRI. RFLPs were visualized by Southern hybridization with eight rice mitochondrial DNA probes labeled non-radioactively with digoxigenin-dUTP. A total of 66 bands were obtained from all of the accessions. The total number of fragments per plant was higher in diploid A-genome species (an average of 35.3) than that in diploid B- and C-genome species and allotetraploid BC- and CD-genome species (an average of 28.2). The extent of the polymorphism in the RFLP patterns was various depending on the probes used. A diverse polymorphism was observed with most of the probes used, i.e. the cob, cox I, atp6, rrn18, rrn26 and atp9 regions, whereas, no polymorphic band was observed with a probe for the coxII region. The genus Oryza was separated into two large clusters. One cluster was comprised of A-genome species and the other cluster was comprised of B-, BC-, C-, and CD- genome species. Within A-genome species, the genetic variation was relatively high. Even in O. sativa species, the RFLP patterns of japonica and indica subspecies were clearly different from each other when three probes were used. However, there was no polymorphism between O. glaberrima and O. barthii. Within the genomes of B, BC, C, and CD, RFLP patterns were similar to each other and they showed a closer affinity except for O. minuta (BBCC). Within the BC genome species, the patterns of O. punctata and O. minuta were largely different from each other and separated into two different subclusters. Thus, the mitochondrial genomes of the two BC species (O. punctata and O. minuta) apparently evolved independently. Among CD genome species (O. latifolia and O. alta), the patterns of one accession, O. alta W0017 were largely different from those of the other accessions of CD genome species.  相似文献   

8.
Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.  相似文献   

9.
The genus Oryza comprises 22 species which are potentially useful as a source of genetic variability that can be introgressed into the worldwide cultivated rice, Oryza sativa. Molecular markers are useful tools for monitoring gene introgressions and for detecting polymorphism among species. In this study, cross-amplification was estimated among 28 accessions of 16 Oryza species, representing the genomes AA, BB, CC, BBCC and CCDD, using 59 microsatellite (OG, OS and RM series) and 15 STS (Sequence Tagged Sites) markers. All markers amplified at least one Oryza species, indicating different levels of transferability across species. Markers based on microsatellite sequences amplified 37 % of the accessions, with an average of 6.58 alleles per locus and an average polymorphism information content (PIC) of 70 %. For STS markers, the amplification level was 53.3 %, and the average number of alleles and PIC values were 1.6 and 10 %, respectively. These Results showed that although the STS markers detected a reduced level of genetic diversity, the transferability was higher, indicating that they can be used for genetic analysis when evaluating less genetically related species of Oryza. Among the microsatellite markers, an analysis of species with an AA genome showed that the OG markers produced the highest level of polymorphic loci (54.6 %), followed by RM markers (48 %). Highly polymorphic and transferable molecular markers in Oryza can be useful for exploiting the genetic resources of this genus, for detecting allelic variants in loci associated with important agronomic traits, and for monitoring alleles introgressed from wild relatives to cultivated rice.  相似文献   

10.
We have isolated a new family of mobile elements, Micron, which occur within microsatellites dispersed throughout the rice (Oryza sativa) genome. The first of these segments, Micron 001, was found in a microsatellite consisting of a (TA)n sequence upstream of the rice phytochrome A (phyA) gene. PCR analysis of related rice species suggests that Micron 001 integrated into this microsatellite locus prior to the divergence of the two wild species O. rufipogon and O. barthii from a common ancestor. Micron elements are short (393-bp), possess subterminal inverted repeats and the single strands have the potential to form stable secondary structures via several internal repeats. Aside from the absence of terminal inverted repeats, these characteristics resemble those of MITEs (Miniature Inverted-Repeat Transposable Elements). We estimate that 100-200 copies of Micron-related sequences are present in the rice nuclear genome, while the chloroplast and mitochondrial genomes lack this sequence. Nineteen homologs of Micron 001 exhibited extremely high nucleotide sequence conservation (greater than 90%), suggesting a recent spread of Micron elements within the genus Oryza. Surprisingly, nucleotide sequence alignments showed that all of the Micron elements are flanked on both sides by microsatellite sequence consisting mainly of (TA)n. Twenty-three elements were mapped to seven separate chromosomes. Therefore Micron elements form a family of dispersed, highly conserved repeats. This is the first report of a transposable element that targets microsatellite loci.  相似文献   

11.
Patterns of sequence variation of nuclear genes encoding 10-kDa and 16-kDa prolamin seed storage proteins were examined in Oryza glaberrima (African rice, Poaceae) and O. barthii and compared to available sequences for the genus to assess potential application of these gene families in evolutionary studies. Sequence variation among species in 10-kDa genes was very low. In contrast, the 16-kDa genes have undergone rapid evolution, displaying a larger number of length and point mutations that in some cases result in frame shift or produce truncated protein or pseudogenes. The proportion of nonsynonymous substitution is high in both genes. Although nonsynonymous mutations did not alter the overall profile of the protein, pronounced shifts in proportions of some amino acids were evident and could have systematic application. The data provide support for a proposed direct evolution of the Asian (O. sativa) and African rice from O. rufipogon and O. barthii, respectively. Patterns of amino acid frequencies of the 10-kDa genes show the distinctness of O. rufipogon and O. longistaminata from the other species. The study underscores the potential application of the prolamin genes as markers from the nuclear genome for evolutionary studies in grasses at different taxonomic levels.  相似文献   

12.
Previous studies based on morphological and molecular markers indicated that there are two cultivated and five wild rice species within the Oryza genus with the AA genome. In the cultivated rice species, Oryza sativa, a retroposon named p-SINE1 has been identified. Some of the p-SINE1 members characterized previously showed interspecific insertion polymorphisms in the species with the AA genome. In this study, we identified new p-SINE1 members showing interspecific insertion polymorphisms from representative strains of four wild rice species with the AA genome: O. barthii, O. glumaepatula, O. longistaminata, and O. meridionalis. Some of these members were present only in strains of one species, whereas the others were present in strains of two or more species. The p-SINE1 insertion patterns in the strains of the Asian and African cultivated rice species O. sativa and O. glaberrima were very similar to those of the Asian and African wild rice species O. rufipogon and O. barthii, respectively. This is consistent with the previous hypothesis that O. sativa and O. glaberrima are derived from specific wild rice species. Phylogenetic analysis based on the p-SINE1 insertion patterns showed that the strains of each of the five wild rice species formed a cluster. The strains of O. longistaminata appear to be distantly related to those of O. meridionalis. The strains of these two species appear to be distantly related to those of three other species, O. rufipogon, O. barthii and O. glumaepatula. The latter three species are closely related to one another with O. barthii and O. glumaepatula being most closely related. A phylogenetic tree including a hypothetical ancestor with all loci empty for p-SINE1 insertion showed that the strains of O. longistaminata are related most closely to the hypothetical ancestor. This indicates that O. longistaminata and O. meridionalis diverged early on, whereas the other species diverged relatively recently, and suggests that the Oryza genus with AA genome might have originated in Africa, rather than in Asia.  相似文献   

13.
Genetic variations of AA genome Oryza species measured by MITE-AFLP   总被引:5,自引:0,他引:5  
MITEs (miniature inverted-repeat transposable elements) are the major transposable elements in Oryza species. We have applied the MITE-AFLP technique to study the genetic variation and species relationship in the AA-genome Oryza species. High polymorphism was detected within and between species. The genetic variation in the cultivated species, Oryza sativa and Oryza glaberrima, was comparatively lower than in their ancestral wild species. In comparison between geographical lineages of the AA genome species, African taxa, O. glaberrima and Oryza barthii, showed lower variation than the Asian taxa, O. sativa, Oryza rufipogon, and Oryza nivara, and Australian taxon Oryza meridionalis. However, another African taxon, Oryza longistaminata, showed high genetic variation. Species relationships were analyzed by the pattern of presence or absence of homologous fragments, because nucleotide sequences of the detected MITE-AFLP fragments revealed that the same fragments in different species shared very high sequence homology. The clustering pattern of the AA-genome species matched well with the geographical origins (Asian, African and Australian), and with the Australian taxon being distant to the others. Therefore, this study demonstrated that the MITE-AFLP technique is amenable for studying the genetic variation and species relationship in rice.  相似文献   

14.
Microsatellites have many desirable marker properties. There has been no report of the development and utilization of microsatellite markers in oat. The objectives of the present study were to construct oat microsatellite-enriched libraries, to isolate microsatellite sequences and evaluate their level of polymorphism in Avena species and oat cultivars. One hundred clones were isolated and sequenced from three oat microsatellite-libraries enriched for either (AC/TG) n , (AG/TC) n or (AAG/TTC) n repeats. Seventy eight clones contained microsatellites. A database search showed that 42% of the microsatellite flanking sequences shared significant homology with various repetitive elements. Alu and retrotransposon sequences were the two largest groups associated with the microsatellites. Forty four primer sets were used to amplify the DNA from 12 Avena species and 20 Avena sativa cultivars. Sixty two percent of the primers revealed polymorphism among the Avena species, but only 36% among the cultivars. In the cultivars, the microsatellites associated with repetitive elements were less polymorphic than those not associated with repetitive elements. Only 25% of the microsatellites associated with repetitive elements were polymorphic, while 46% of the microsatellites not associated with repetitive elements showed polymorphism in the cultivars. An average of four alleles with a polymorphism information content (PIC) of 0.57 per primer set was detected among the Avena species, and 3.8 alleles with a PIC of 0.55 among the cultivars. In addition, 54 barley microsatellite primers were tested in Avena species and 26% of the primers amplified microsatellites from oat. Using microsatellite polymorphisms, dendrograms were constructed showing phylogenetic relationships among Avena species and genetic relationships among oat cultivars. Received: 1 November 1999 / Accepted: 14 April 2000  相似文献   

15.
Twenty four chloroplast microsatellite loci having more than ten mononucleotide repeats were identified from the entire chloroplast DNA sequence of common wheat, Triticum aestivum cv Chinese Spring. For each microsatellite, a pair of primers were designed to produce specific PCR products in the range of 100– 200 bp. The allelic diversity at the microsatellite loci was evaluated using 43 accessions from 11 Triticum and Aegilops species involved in wheat polyploid evolution. Polymorphic banding patterns were obtained at 21 out of 24 chloroplast microsatellite loci. The three monomorphic microsatellites were found to be located in coding regions. For the polymorphic microsatellites, the number of alleles per microsatellite ranged from 2 to 7 with an average of 4.33, and the diversity values (H) ranged from 0.05 to 0.72 with an average of 0.47. Significant correlations (P<0.01) were observed between the number of repeats and the number of alleles, and between the number of repeats and diversity value, respectively. The genetic diversity explained by chloroplast microsatellites and nuclear RFLP markers were compared using 22 tetraploid accessions. Although the number of alleles for nuclear RFLP markers was found to be higher than that for chloroplast microsatellites, similar diversity values were observed for both types of markers. Among common wheat and its ancestral species, the percentages of common chloroplast microsatellite alleles were calculated to examine their phylogenetic relationships. As a result, Timopheevi wheat species were clearly distinguished from other species, and Emmer and common wheat species were divided into two main groups, each consisting of a series of wild and cultivated species from tetraploid to hexaploid. This indicates that the two types of chloroplast genomes of common wheat might have independently originated from the corresponding types of wild and cultivated Emmer wheat species. Received: 6 October 2000 / Accepted: 13 March 2001  相似文献   

16.
? Premise of the study: Chloroplast microsatellites were developed in Theobroma cacao to examine the genetic diversity of cacao cultivars in Trinidad and Tobago. ? Methods and Results: Nine polymorphic microsatellites were designed from the chloroplast genomes of two T. cacao accessions. These microsatellites were tested in 95 hybrid accessions from Trinidad and Tobago. An average of 2.9 alleles per locus was found. ? Conclusions: These chloroplast microsatellites, particularly the highly polymorphic pentameric repeat, were useful in assessing genetic variation in T. cacao. In addition, these markers should also prove to be useful for population genetic studies in other species of Malvaceae.  相似文献   

17.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.  相似文献   

18.
A set of 81 new microsatellite markers for Carica papaya L. previously identified by data mining using freely available sequence information from Genbank were tested for polymorphism using 30 germplasm accessions from the Papaya Germplasm Bank (PGM) at Embrapa Mandioca e Fruticultura Tropical (CNPMF) and 18 landraces. The data were used to estimate pairwise genetic distances between the genotypes. A neighbor-joining based dendrogram was used to define clusters and infer possible genetic structuring of the collection. Most microsatellites were polymorphic (73%), with an observed number of alleles per locus ranging from one to eleven. The levels of observed and expected heterozygosity for 51 polymorphic loci varied from 0.00 to 0.85 and from 0.08 to 0.82, averaging 0.19 and 0.59, respectively. Forty-four percent of microsatellites showed polymorphism information content (PIC) higher than 0.50. The compound microsatellites seem to be more informative than dinucleotide and trinucleotide repeats in average alleles per locus and PIC. Among dinucleotides, AG/TC or GA/CT repeat motifs exhibited more informativeness than TA/AT, GT/CA and TG/AC repeat motifs. The neighbor-joining analysis based on shared allele distance could differentiate all the papaya accessions and landraces as well as differences in their genetic structure. This set of markers will be useful for examining parentage, inbreeding and population structure in papaya.  相似文献   

19.
? Premise of the study: New microsatellite primers were developed for testing genetic differentiation within Nothoceros aenigmaticus and their potential use in other Nothoceros species. The microsatellites are designed to investigate partitioning of genetic variation in a taxon with a peculiar sex allopatry in the southern Appalachian Mountains and relationships with conspecific sexual populations from Mexico. ? Methods and Results: We used two methods for microsatellite development: an enriched library and second-generation shotgun sequence reads. From these two methods, a total of nine primer pairs were selected and tested on 89 southern Appalachian N. aenigmaticus accessions, nine Mexican accessions, and 16 N. vincentianus accessions. Three mitochondrial loci were recovered from the enriched library method and six loci from 454 shotgun sequencing: three were from the chloroplast and three from the nucleus. The primers amplified repeats with two to 20 alleles per locus. ? Conclusions: New microsatellite primers were developed for testing genetic differentiation within N. aenigmaticus and potentially for use in other Nothoceros species. We present one of the first reports of highly polymorphic mitochondrial microsatellites in plants.  相似文献   

20.
BACKGROUND AND AIMS: Tolerance of complete submergence is recognized in a small number of accessions of domesticated Asian rice (Oryza sativa) and can be conferred by the Sub1A-1 gene of the polygenic Submergence-1 (Sub1) locus. In all O. sativa varieties, the Sub1 locus encodes the ethylene-responsive factor (ERF) genes Sub1B and Sub1C. A third paralogous ERF gene, Sub1A, is limited to a subset of indica accessions. It is thought that O. sativa was domesticated from the gene pools of the wild perennial species O. rufipogon Griff. and/or the annual species O. nivara Sharma et Shastry. The aim of this study was to evaluate the orthologues of the Sub1 locus in the closest relatives of O. sativa to provide insight into the origin of the gene and allelic variation of the Sub1 locus. METHODS: Orthologues of the Sub1 genes were isolated from O. rufipogon and O. nivara by use of oligonucleotide primers corresponding to the most highly conserved regions of the Sub1 genes of domesticated rice. The phylogenetic relatedness of Sub1 genes of O. sativa and its wild relatives was evaluated. KEY RESULTS AND CONCLUSIONS: Both O. rufipogon and O. nivara possess two Sub1 gene orthologues with strong sequence identity to the Sub1B and Sub1C alleles of cultivated rice. The phylogeny of the Sub1 genes of the domesticated and wild rice suggests that Sub1A arose from duplication of Sub1B. Variation in Sub1B alleles is correlated with the absence or presence of Sub1A. Together, the results indicate that genetic variation at the Sub1 locus is due to gene duplication and divergence that have occurred both prior to and after rice domestication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号