首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sprague-Dawley rats and Swiss mice were given diets containing lindane, 125 ppm, or zineb, 5200 ppm, or a mixture of both at the above-mentioned concentrations for 2 and 4 weeks. The effect of pesticide ingestion on the ability of liver S9 to metabolize aflatoxin B1 (AFB1) into mutagenic derivatives was tested by the Salmonella (TA100)/microsome test according to Ames. Control mouse-liver S9 was less efficient (13%) than the corresponding preparation from control rat liver. The ingestion of lindane produced a similar increase in the activities of both rat- (68%) and mouse-liver S9 (62%). Pretreatment with zineb inhibited (46%) rat-liver S9 but caused a marked increase (400%) in the activity of mouse-liver S9. Concomitant exposure to both pesticides showed that lindane released the inhibitory action of zineb on rat-liver S9 and reduced the stimulatory effect of zineb on mouse-liver S9. The inducing action of zineb in mice was a function of the dietary concentration of the pesticide. No effect was observed at dietary concentrations of zineb up to and including 500 ppm.  相似文献   

2.
3 epoxy-resin hardeners, 4,4'-diaminodiphenyl ether (DDE), 4,4'-diaminodiphenylmethane (DDM), and 4,4'-diaminodiphenylsulfone (DDS), and their N-acetyl and N,N'-diacetyl derivatives were examined for their mutagenicity using Salmonella typhimurium TA98 and TA100 as the tester stains and an S9 mix containing a rat-liver 9000 X g supernatant fraction as the metabolic activation system. DDE and DDM were mutagenic towards TA98 and TA100 in the presence of S9 mix while DDS exhibited no significant mutagenic activity towards these tester strains. These epoxy-resin hardeners were metabolized in vivo and their N-acetyl and N,N'-diacetyl metabolites were found in the urine. Among these acetyl metabolites, only N-acetyl-DDE was found to be mutagenic towards TA98 and TA100 in the presence of S9 mix. None of these acetyl metabolites exhibited significant mutagenic activity towards these tester strains in the absence of S9 mix.  相似文献   

3.
R Pahlman  V Raunio 《Mutation research》1983,121(3-4):177-184
The mutagenicities of fodder proteins (Pekilo, L-lysine and Orsan) were tested towards Salmonella typhimurium in the plate-incorporation assay in the presence or absence of metabolic activation with a rat-liver S9 preparation. Filtrates and 2-, 5- and 10-fold-concentrated filtrates of saline- or ethanol-soluble fodder proteins were tested. No mutagenic activity was observed.  相似文献   

4.
The mutagenicity of fresh solutions of p-phenylenediamine (PPD) and Aroclor 1254 was investigated. The histidine-requiring strains of Salmonella typhimurium were used in the absence and presence of uninduced and/or Aroclor-induced rat-liver homogenate. The presence of polychlorinated biphenyls (PCBs) was also examined by chromatographic methods in Aroclor-induced rat-liver homogenate. In the absence of metabolic activation, as well as in the presence of uninduced rat-liver homogenate, PPD was not mutagenic in the strains used. In the presence of Aroclor-induced S9 a twofold increase (or less) was observed in the number of revertant colonies over those of the controls in TA1538 and TA98. There was no increase in the number of revertant colonies over those of the controls when PPD was dissolved in NH4OH solution and the solution mixed with H2O2 before the addition of S9 mix. Aroclor 1254 was not mutagenic in TA1538 or TA98. However, the presence of PCBs in Aroclor-induced rat-liver homogenate (induced S9) was identified by gas-liquid chromatography (GLC), high-performance liquid chromatography (HPLC) and gas--liquid chromatography/mass spectrometry (GC/MS).  相似文献   

5.
In plate assays in the presence of S. typhimurium TA100 and various amounts of liver 9000 X g supernatant (S9) from either untreated, phenobarbitone- (PB) or Aroclor-treated rats, the S9 concentration required for optimal mutagenicity of aflatoxin B1 (AFB) depended both on the source of S9 and on the concentration of the test compound. In these assays, the water-soluble procarcinogen, dimethylnitrosamine (DMN) was mutagenic in S. typhimurium TA1530 only in the presence of a 35-fold higher concentration of liver S9 from PB-treated rats than that required for AFB, a lipophilic compound. In liquid assays, a biphasic relationship was observed in the mutagenicities in S. typhimurium TA100 of benzo[a]pyrene (BP) and AFB and the concentration of liver S9. For optimal mutagenesis of BP, the concentration of liver S9 from rats treated with methylcholanthrene (MC) was 4.4% (v/v); for AFB it was 2.2% (v/v) liver S9 from either Aroclor-treated or untreated rats. At higher concentrations of S9 the mutagenicity of BP and of AFB was related inversely to the amount of S9 per assay. The effect of Aroclor treatment on the microsomemediated mutagenicity of AFB was assay-dependent: in the liquid assay, AFB mutagenicity was decreased, whereas in the plate assay it did not change or was increased. As virtually no bacteria-bound microsomes were detected by electron microscopy, after the bacteria had been incubated in a medium containing 1-34% (v/v) MC-treated rat-liver S9, it is concluded that, in mutagenicity assays, mutagenic metabolites generated by microsomal enzymes from certain pro-carcinogens have to diffuse through the assay medium before reaching the bacteria. Thus the mutagenicity of BP was dependent on both the concentration of rat-liver microsomes and that of total cytosolic proteins and other soluble nucleophiles such as glutathione. At a concentration of 4.4% (v/v) liver S9, the mutagenicity of BP was about 3.6 times higher than in assays containing a 4-fold higher concentration of cytosolic fraction. Studies on the glutathione-dependent reduction of BP mutagenicity in plate assays has shown that, in the presence of liver S9 concentrations greater than that required for optimal mutagenicity, the reduction in mutagenicity was related directly to the concentration of liver S9. Thus, in the Salmonella/microsome assay, when the concentration of rat-liver S9 was increased over and above the amount required for the optimal mutagenicity of BP, the mutagenic metabolites of BP were inactivated (by being trapped with cytosolic nucleophiles and/or by enzymic conjugation with glutathione); this effect increased more rapidly than their rate of formation. The concentration of liver S9 for optimal mutagenicity of test compounds requiring activation catalyzed by mono-oxygenases seems, therefore, to be related to the departure from linearity of the relationship between the rate of formation of mutagenic metabolites and the concentration of liver S9.  相似文献   

6.
The caffeine derivative 8-ethoxycaffeine (EOC) was tested in 3 different test systems in vitro. Each experiment was carried out with and without S9 mix. Incubation temperatures were 20 and 37 degrees C. (1) In the Salmonella/microsome test, EOC behaved as a pro-mutagen in the Salmonella typhimurium strain TA1535. No mutagenic activity was found in experiments without S9 mix. The influence of temperature was negligible. The mutagenic activity of EOC depended mainly on the mammals used to prepare the S9 fraction and on the agents given to them to induce liver enzymes. (2) EOC did not induce sister-chromatid exchanges in cell cultures, either at 20 or at 37 degrees C. (3) On the other hand, EOC induced chromosomal aberrations when the cells were incubated at 37 degrees C without S9 mix.  相似文献   

7.
The mutagenicity of nitrosopyrrolidine (NPYR) and its derivatives was determined by use of the Ames Salmonella assay. A clear specificity to revert the missense stain of TA1535 and a requirement for the phenobarbital-induced rat-liver activation system (S9 mix) were noted. 3,4-Dichloronitrosopyrrolidine was more mutagenic than NPYR, whereas 3-hydroxynitrosopyrrolidine was weakly mutagenic. The carcinogenic nitroso-3-pyrrolidine was not mutagenic under the test conditions. The noncarcinogenic derivatives (2,5-dimethylnitrosopyrrolidine, nitrosoproline and 4-hydroxynitrosoproline) were not mutagenic. Liquid preincubation assays were not any more effective than the pour-plate assays. Selected derivatives of NPYR were tested in the Escherichia coli K-12 (343/113) assay A specificity to revert the missense mutation at the arg locus and a dependence on phenobarbital-induced rat-liver S9 mix were noted with NPYR and its derivatives. 3,4-Dibromonitrosopyrrolidine, which was not mutagenic in Salmonella, was effective in E. coli, and the weakly carcinogenic NPRL was a weak mutagen resulting in a 2-fold enhancement in the E. coli arginine reversion assay.  相似文献   

8.
8 representative 2-substituted 5-nitrofurans were assayed for mutagenicity in Salmonella typhimurium strains TA98, TA98NR and TA98/1,8-DNP6. The tested compounds were: 5-nitro-2-furanacrylic N-(5-nitro-2-furfurylidene)hydrazide (1); furazolidone (2); 5-nitro-2-furanacrolein (3); 5-nitro-2-furaldehyde semicarbazone (4); 5-nitro-2-furaldehyde (5); nitrofurantoin (6); 5-nitro-2-furaldehyde diacetate (7); and 5-nitro-2-furoic acid (8). These compounds exhibited markedly different mutagenic activities in TA98, and these mutagenicities were similar both in the presence and the absence of rat-liver hepatic S9 activation enzymes. The mutagenic responses ranged from potent (90-300 revertants/nmole, compounds 1-3), to medium (about 10 revertants/nmole, compounds 4 and 6), to weak (0-4 revertants/nmole, compounds 5, 7 and 8). The mutagenicity of 3 was similar in all 3 tester strains, while compound 8 was essentially inactive. The mutagenicities of 1, 4, 5 and 7 were decreased 30-75% in TA98NR, while 2 and 6 showed an even greater depression of activity in this strain. Compound 6 with S9 was about equally mutagenic in TA98 and TA98/1,8-DNP6, while the activities of 6 without S9 and 2 and 7 both with and without S9 were 50-75% lower in TA98/1,8-DNP6. Compounds 1, 4 and 5 were only about 5-10% as mutagenic in TA98/1,8-DNP6 as in TA98. These results suggest that: (i) nitrofurans and their S9-mediated metabolites have similar mutagenic potencies; (ii) with the possible exception of No. 3, nitroreduction is the major route of mutagenic activation for these nitrofurans; and (iii) for compounds 2, 6 and 7, both the presumed N-hydroxy and N,O-ester derivatives of the corresponding aminofuran metabolites appear to lead to mutations.  相似文献   

9.
Recently, mutagenic activity on several strains of Salmonella typhimurium has been found in many heat-processed foodstuffs. The previously reported direct-acting mutagenic activity of coffee in Salmonella typhimurium TA100 (Ames assay) was confirmed in our study. In addition to TA100, a mutagenic effect of coffee was also found by using the newly developed strain TA102. The mutagenic activity was abolished by the addition of rat-liver homogenate. 10% S9 mix completely eliminated the mutagenic activity of 30 mg of coffee per plate. The addition of reduced glutathione to active S9 further decreased the mutagenic activity and also reduced the mutagenicity together with inactivated S9. The compound or compounds responsible for this inactivation are heat-labile and seem to be located in the cytosol fraction of the S9. Part of the mutagenicity of coffee was also lost spontaneously upon incubation at temperatures between 0 degrees and 50 degrees C. The loss of activity was dependent on temperature, being more pronounced at 50 degrees C compared to 0 degrees C (at 50 degrees C approximately 50% of the mutagenic activity was lost after 6 h). As anaerobic conditions prevented this loss of mutagenicity almost totally, oxidative processes are probably responsible for the inactivation. The stability of the mutagen was not influenced by incubation at low pH values (pH 1-3), with or without the addition of pepsinogen. The mutagenic properties of methylglyoxal, which to some extent could be responsible for the mutagenic activity of coffee, were compared with those of coffee. Methylglyoxal was strongly mutagenic towards Salmonella typhimurium TA100 and TA102. Its mutagenic activity was partially inactivated by the addition of 10% S9. Glyoxalase I and II together with reduced glutathione abolished the mutagenic activity of methylglyoxal but reduced the mutagenicity of coffee by only 80%. Since these enzymes occur in mammalian cells, the mutagenic compound(s) of coffee could also be degraded in vivo. This conclusion is supported by the fact that a long-term carcinogenicity study with rats was negative. These results clearly demonstrate that the effects observed in vitro do not necessarily also occur in vivo, but that in vitro experiments may contribute to the understanding of fundamental mechanisms of chemical carcinogenesis.  相似文献   

10.
An in vitro protocol was designed to separate the process of metabolic activation from the mutational events. Cultured rat hepatocytes were first incubated with the food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) or 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). After the incubation period the medium was removed and further incubated with Salmonella typhimurium TA98. A high direct mutagenic activity of the culture medium was then measured. The half-lives of the mutagenic metabolites formed from IQ and MeIQ were in the order of 45 min. The presence of the cytochrome P450 inhibitors alpha-naphthoflavone and metyrapone during the pre-incubation period reduced the accumulation of mutagenic metabolites. No effects of ascorbate on the mutagenic effects of IQ and MeIQ were seen. (+)-Catechin, another antioxidant and free-radical scavenger, markedly enhanced the number of IQ/MeIQ-induced revertants when added to the hepatocytes. In contrast, (+)-catechin clearly decreased the number of revertants when 9000 X g supernatant from rat liver (S9) was used as an activation system. No marked effect of pentachlorophenol, an inhibitor of hepatocyte sulfation and bacterial O-acetylation, was seen using hepatocytes as an activation system, while the mutagenic activity of both IQ and MeIQ was reduced by 90% in the S9/Salmonella system. The addition of an inhibitor of glucuronidation, galactosamine, or the nucleophile glutathione caused no or only minor decreases in the genotoxic effects of the IQ compounds. With both S9 and hepatocytes as activation systems the relative mutagenic effects observed in the S. typhimurium strains TA98 and TA98 NR were in the same order of magnitude, while a large decrease was seen with TA98/1,8-DNP6. The results show that this in vitro test protocol may be useful as a tool to study mechanisms involved in the formation of mutagenic metabolites.  相似文献   

11.
The mutagenicity of several test compounds was verified by the Salmonella/microsome mutagenicity test (Ames test), using both human liver and rat liver (untreated or pretreated with Aroclor 1254) S9 under identical experimental conditions. Aflatoxin B1, 3-methylcholanthrene, and cigarette-smoke condensate were less mutagenic in the presence of human-liver S9 than in the presence of rat-liver S9 (particularly after treatment with Aroclor 1254). The opposite was observed with 2-aminonanthracene and to a lesser degree with 2-aminofluorene; correlation studies indicate that the two compounds were activated by the same or by very similar enzymes, probably cytochrome P-450s. These results clearly indicate that human-liver S9, as an activating system, behaves differently than rat-liver S9; therefore, it may constitute a useful, additional tool for the study of mutagenicity and probably, carcinogenicity in man.  相似文献   

12.
2-Acetylaminofluorene (AAF) was highly mutagenic to Salmonella typhimurium strain TA98, when activated by a liver post-mitochondrial supernatant fraction (S9 fraction) from guinea-pigs, in spite of the resistance of this species to AAF carcinogenesis and the low capacity of the liver of this species for N-hydroxylation of AAF. The mutagenicity was comparable to or higher than that resulting from activation by mouse- or rat-liver S9 fraction, and was not enchanced by treatment with cytochrome P-450 inducers, a combination of phenobarbital and 5,6-benzoflavone. In an attempt to understand this unexpected result we examined whether a cytochrome P-450 mixed-function oxidase system participated in the mutagenic activation of AAF by guinea-pig liver, as it does in the case of mouse liver. The mutagenic activation was: (1) completely dependent on the addition of a co-factor, NADPH, to the mutation assay system, (2) completely suppressed by antiserum against NADPH--cytochrome c reductase, and (3) sensitive to a cytochrome P-450 inhibitor, 7,8-benzoflavone. These results indicate that the cytochrome P-450 enzyme system is essentially involved even in the mutagenic activation of AAF by guinea-pig-liver S9 fraction. Based on both the present and other data, the mechanism of the mutagenic activation is discussed to explain the observed high mutagenic potential of AAF in the presence of guinea-pig-liver S9 fraction.  相似文献   

13.
The nephrotoxic and nephrocarcinogenic potential of the haloalkenes is associated with the conjugation of the chemicals to L-glutathione. Subsequent processing of the haloalkene glutathione S-conjugates via the cysteine conjugate beta-lyase pathway in the mammalian kidney yields nephrotoxic and mutagenic species. To investigate whether S-conjugates of the model chlorofluoroalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene (CAS # 431-52-7) and trichlorofluoroethene (CAS # 359-29-5) show comparable effects, we have synthesised the respective cysteine and glutathione S-conjugates and subjected them to the Ames test. The cysteine and glutathione S-conjugates of tetrachloroethene (CAS # 127-18-4), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) and S-(1,2,2-trichlorovinyl)glutathione (TCVG) were used as positive controls and reference substances. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)-L-cysteine (DCTFPC) and S-(2,2-dichloro-1-fluorovinyl)-L-cysteine (DCFVC) showed clear dose-dependent mutagenic effects with the Salmonella typhimurium tester strains TA100 and TA98. Using TCVC as a reference substance the following ranking in mutagenic response was established: TCVC>DCTFPC>DCFVC. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)glutathione (DCTFPG) and S-(2,2-dichloro-1-fluorovinyl)glutathione (DCFVG) showed potent dose-dependent mutagenic effects with the S. typhimurium tester strain TA100 in the presence of a rat kidney S9-protein fraction; tests carried out in the absence of the bioactivation system resulted only in background rates of revertants. Using TCVG as a reference substance the following ranking in mutagenic response was established: TCVG=DCTFPG>DCFVG.The data obtained provide a basis for further studies on the mutagenic and presumable carcinogenic potential of the substances.  相似文献   

14.
7H-Dibenzo[c,g]carbazole (DBC) is a potent carcinogen of environmental import. Reverse-mutation plate-incorporation assays for mutagenicity were undertaken in Salmonella typhimurium strains TA98 and TA100. Results were negative when no exogenous activation system was used, as well as when assays incorporated liver homogenates (S9) from rats, mice and rabbits. By contrast DBC was mutagenic in a forward mutation assay in Salmonella strain TM677 using resistance to 8-azaguanine for selection. Metabolites of DBC were generated by incubation with rat-liver microsomes and separated by HPLC. Two of these metabolites were directly mutagenic for Salmonella strain TM 677 while two others were mutagenic upon addition of S9. Synthetic phenolic derivatives of DBC were also mutagenic in this assay when further metabolized. It is likely that metabolites of DBC phenols constitute the biologically active forms.  相似文献   

15.
The mutagenicities of 3'-methyl-N,N-dimethyl-4-aminoazobenzene (3'-Me-DAB) and 3'-CH2OH-DAB, potent hepatocarcinogens, activated by rat-liver S9 were compared with those of their isomers (2'- or 4'-substituted DAB) and with those obtained with liver S9 from mice, hamsters and man. All 6 aminoazo dyes showed positive mutagenicity on both strains TA98 and TA100 in the presence of liver S9 from rats pretreated with polychlorinated biphenyls (PCB) whereas 3'-Me-DAB and 3'-CH2OH-DAB were negative in the presence of S9 from other organs of rats and human liver. 3'-Me-DAB and 3'-CH2OH-DAB also showed negative or only a weak mutagenicity in the presence of liver S9 from non-treated animals. Treatment of the muta-carcinogens by liver S9 from PCB-treated mice or hamsters exerted mutagenicity on TA98, but less than that seen with rat-liver S9. The activity of 3'-Me-DAB in the presence of female rat-liver S9 was lower than that obtained with the male. Thus a specificity in the aminoazo dye carcinogenesis in regard to species, sex and organ was also observed in the mutagenic effects of 3'-Me-DAB on Salmonella.  相似文献   

16.
The mutagenicity of 4 azo dyes (FD&C Yellow No. 5, FD&C Yellow No. 6, FD&C Red No. 40 and amaranth) that are widely used to color food has been evaluated. 4 different methods were used: (1) the standard Ames plate-incorporation assay performed directly on the dyes in the absence of S9 and in the presence of rat- or hamster-liver S9; (2) application of the standard plate assay to ether extracts of aqueous solutions of the dyes; (3) a variant of the standard assay, using hamster liver S9, preincubation, flavin mononucleotide (FMN) and other modifications designed to facilitate azo reduction; and (4) reduction of the dyes with sodium dithionite, followed by ether extraction and the standard plate assay. Assays that include chemical reduction (methods 3 and 4) were included because azo compounds ingested orally are reduced in the intestine with the release of free aromatic amines. No mutagenic activity was seen for any of the azo dyes tested by using the standard Ames plate assay (method 1). Ether extracts of some samples of FD&C Yellow No. 6, FD&C Red No. 40 and amaranth were active (method 2), but only at high doses, generally 250 mg-equivalents or more per plate. These results indicate the presence of low levels of ether-extractable mutagenic impurities. The FMN preincubation assay (method 3) gave negative results for all dye samples tested. Most batches of FD&C Red No. 40 tested had mutagenic activity that was detectable when the ether extract of less than 1 mg of dithionite-reduced dye was plated in the presence of S9 (method 4). This finding implies that an impurity in these samples of FD&C Red No. 40 can be reduced to yield an ether-extractable mutagen. Dithionite-reduced samples of FD&C Yellow No. 6 and amaranth showed ether-extractable mutagenic activity only at much higher doses than those at which activity was seen with most dithionite-reduced samples of FD&C Red No. 40 (method 4). FD&C Yellow No. 5 showed no mutagenic activity with this method. Mutagenic activity was not detected when FD&C Red No. 40 was tested by using the azo reduction preincubation assay with FMN (method 3).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The mutagenicity of nitrated benzo[a]pyrene (BP) and the related compounds, 1- and 3-nitrobenzo[a]pyrene (NBP), 1- and 3-nitro-6-cyanobenzo[a]pyrene (N-6-CBP), 1- and 3-nitro-6-azabenzo[a]-pyrene (N-6-ABP), 1- and 3-nitro-6-azabenzo[a]-pyrene-N-oxide (N-6-ABPO) and 1,6- and 3,6-dinitrobenzo[a]-pyrene (DNBP), was investigated. The mutagenic activities of 3-N-6-CBP and 3-N-6-ABP were 117 and 76 times, respectively, that of 3-NBP. In addition, 3,6-DNBP was more mutagenic than 1,6-DNBP. It is suggested that the mutagenic activation differs with the position of NO2 substitution in the chemical structure. A nitro derivative with NO2 substitution at the 3 position of the aromatic ring of BP was more mutagenic than that with the substitution at the 1 or 6 position. The reducibility of DNBPs was then determined by detecting 1- or 3-amino-6-nitrobenzo[a]pyrene (A-6-NBP), a metabolite of DNBP; 3,6- and 1,6-DNBP were reduced to 3- and 1-A-6-NBP at frequencies of 958 +/- 26 and 79 +/- 8, respectively, pmole per mg of protein, when the compound was incubated anaerobically with rat liver S9 mix at 37 degrees C for 15 min. NO2 substituted at the 3 position of the aromatic ring of BP was readily reduced by a microsome enzyme to form an amino derivative. The result suggests that these compounds have a structure-activity relationship between mutagenicity and NO2 substitution of BP.  相似文献   

18.
Norharman, abundantly present in cigarette smoke and cooked foods, is not mutagenic to Salmonella typhimurium strains. However, norharman shows mutagenicity to S. typhimurium TA98 and YG1024 in the presence of S9 mix when coexisting with aromatic amines, including aniline, o- and m-toluidines. We previously reported that the mutagenicity from norharman and aniline in the presence of S9 mix was due to the formation of a mutagenic compound, 9-(4'-aminophenyl)-9H-pyrido[3,4-b]indole (aminophenylnorharman). In the present study, we analyzed the mutagens produced by norharman with o- or m-toluidine in the presence of S9 mix. When norharman and o-toluidine were reacted at 37 degrees C for 20 min, two mutagenic compounds, which were mutagenic with and without S9 mix, respectively, were produced, and these were isolated by HPLC. The former mutagen was deduced to be 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-3'-methylphenylnorharman) on the basis of various spectral data, and this new heterocyclic amine was confirmed by its chemical synthesis. The latter mutagen was identified to be the hydroxyamino derivative. Amino-3'-methylphenylnorharman induced 41,000 revertants of TA98, and 698,000 revertants of YG1024 per microg with S9 mix. Formation of the same DNA adducts was observed in YG1024 when amino-3'-methylphenylnorharman or a mixture of norharman plus o-toluidine was incubated with S9 mix. These observations suggest that norharman reacts with o-toluidine in the presence of S9 mix to produce amino-3'-methylphenylnorharman, and this compound is metabolically activated to yield its hydroxyamino derivative. After activation by O-acetyltransferase, it might bind to DNA and exert mutagenicity in S. typhimurium TA98 and YG1024. When norharman and m-toluidine were reacted in the presence of S9 mix, 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-2'-methylphenylnorharman) was identified as a mutagen. Thus, the mutagenicity of norharman with m-toluidine may follow a mechanism similar to that with o-toluidine.  相似文献   

19.
The mutagenic effects of bithionol sulfoxide and its two major metabolites, bithionol and bithionol sulfone, on 4 Salmonella typhimurium strains (TA97, TA98, TA100 and TA102) were investigated. Bithionol sulfoxide was found to be mutagenic to TA98 and TA100. However, mutagenicity was abolished in the presence of rat-liver S9 fractions.  相似文献   

20.
Selenium added to the incubation mix containing rat-liver S9 modified both the metabolism and mutagenicity of benzo[a]pyrene (BaP) and several of its metabolites. Selenium (Na2SeO3) inhibited the S9-dependent mutagenic effects of BaP on Salmonella typhimurium strain TA100 as indicated by the number of histidine-dependent revertants counted. This inhibition was concentration-dependent over a range of 12.5 to 100 ppm. When used as the substrate the BaP metabolites 7,8-dihydrodiol, 9,10-dihydrodiol and 3-hydroxy also produced significantly fewer revertants in TA100 when selenium was included in the incubation mix. High-performance liquid chromatographic analysis of metabolites from S9-dependent metabolism of BaP indicated that selenium inhibited the formation of 3-hydroxy-BaP, 9,10-dihydrodiol, 7,8-dihydrodiol, 1,3- and 3,6-quinone. Eluting samples on an alumina column to isolate the conjugated metabolites showed that selenium caused 12% less binding to glucuronides, no significant differences in binding to sulfate esters or glutathione but the amount of unmetabolized BaP and unconjugated metabolites was increased by 48%. These results suggest that selenium inhibits S9-dependent BaP metabolism therefore reducing the mutagenic effects of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号