首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Waseem  A C Gough  N K Spurr  E B Lane 《Genomics》1990,7(2):188-194
Many human genes encoding keratin intermediate filament proteins are clustered on chromosomes 17 (the type I genes) and 12 (the type II genes). Some have not yet been localized, notably the genes for the primary embryonic keratins 8 and 18, normally expressed in simple epithelia: this is because the numerous pseudogenes for these keratins have made it difficult to identify the true functional gene in each case. Through the use of human-specific primers from within introns of the published gene sequence for human type I keratin 18, human genomic DNA has been specifically amplified using the polymerase chain reaction. A single reaction product was obtained. DNA from a characterized series of mouse-human somatic cell hybrid lines was tested for the presence of sequences able to initiate the chain reaction from these primers, and the presence or absence of this genomic DNA PCR product allowed us to assign a gene for human keratin 18 to chromosome 12 unambiguously. This differs from the location of other human type I keratins on chromosome 17 and may indicate the early divergence of the genes for stratifying cell keratins from that of simple, or embryonic, keratin 18.  相似文献   

2.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

3.
4.
From the zebrafish Danio rerio, we have cDNA cloned and sequenced a novel type II and a novel type I keratin, termed DreK8 and DreK18, respectively. We identified DreK8/18 as the true orthologs of the human keratin pair K8/18 as follows: (i) MALDI-MS assignment to the biochemically identified K8 and K18 candidates that are co-expressed in simple epithelia and absent in epidermal keratinocytes; (ii) multiple sequence alignments and phylogenetic tree analysis, showing that DreK8, within the phylogenetic tree of type II keratins, forms a highly bootstrap-supported branch together with K8 from goldfish and rainbow trout, whereas DreK18, within the phylogenetic tree of type I keratins, groups with the K18 sequences from all other vertebrates studied; (iii) presence of a conserved motif in the tail domain of DreK8 (VxKxxETxDGxxVSESSxV) that is typical for all hitherto sequenced K8 orthologs. Moreover, several zebrafish type II keratin sequences published by other authors have now been assigned to epidermal keratins, previously identified biochemically.  相似文献   

5.
From the shark Scyliorhinus stellaris we cloned and sequenced a cDNA encoding a novel type I keratin, termed SstK10. By MALDI-MS peptide mass fingerprinting of cytoskeletal proteins separated on polyacrylamide gels, we assigned SstK10 to a 46-kDa protein which is the major epidermal type I ("IE") keratin in this fish and is specifically expressed in stratified epithelia. In a phylogenetic tree based on type I keratin sequences and with lamprey keratins applied as outgroup, SstK10 branches off in a rather basal position. This tree strongly supports the concept that teleost keratins and tetrapod keratins resulted from two independent gene radiation processes. The only exception is human K18 because its orthologs have been found in all jawed vertebrates (Gnathostomata) studied; in the tree, they form a common, most early branch, with the shark version, SstK18, in the most basal position. Thus, the sequences of SstK10 and SstK18 also favor the classical view of vertebrate evolution that considers the cartilaginous fishes as the most ancient living Gnathostomata. To determine the overall expression patterns of epidermal ("E") and simple epithelial ("S") keratins in this shark, we furthermore tested a panel of monoclonal anti-keratin antibodies by immunofluorescence microscopy of frozen tissue sections, and in immunoblots of cytoskeletal preparations, demonstrating that immunodetection of specific keratins is a convenient method to characterize epithelial tissues in shark.  相似文献   

6.
Keratin 8 (K8) is a type II keratin that is associated with the type I keratins K18 or K19 in single layered epithelia. We generated a bacterial artificial chromosome (BAC) transgenic mouse line that expresses the tamoxifen inducible CreER(T2) inserted into the endogenous murine K8 gene. The transgenic mouse line contains two copies of the BAC transgene. To determine the expression specificity and inducibility of CreER(T2), the K8-CreER(T2) mice were bred with a Gt(ROSA 26)( ACTB-tdTomato-EGFP ) fluorescent protein-based reporter transgenic mouse line. We demonstrated that CreER(T2) and the endogenous K8 gene share the same patterns of expression and that the enzymatic activity of CreER(T2) can be efficiently induced by tamoxifen in all K8-expressing tissues. This mouse line will be useful for studying gene function in development and homeostasis of simple epithelia, and investigating both tissue lineage hierarchy and the identity of the cells of origin for epithelial cancers.  相似文献   

7.
From a teleost fish, the rainbow trout Oncorhynchus mykiss, we have cloned and sequenced cDNAs encoding five different type II keratins. The corresponding protein spots, as separated by 2D-PAGE of trout cytoskeletal preparations, have been identified by peptide mass mapping using MALDI mass spectrometry. Three of the sequenced keratins are expressed in the epidermis (subtype IIe), and two in simple epithelia and mesenchymal cells (subtype IIs). The IIs keratins are both orthologs of human K8. This leaves unsequenced only the trace component S3 of the biochemically established trout keratin catalog. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new keratin sequences together with type II sequences from other vertebrates such as shark, zebrafish, and human; lamprey K8 (recently sequenced in our laboratory) has been used as outgroup. This tree suggests, in a highly bootstrap-supported manner, that the teleost IIe keratins diversified independently from the mammalian IIe keratins. In contrast, all the species investigated express K8-like keratins, suggesting that the different IIe branches evolved from K8-like progenitors. The tree also indicates that the published zebrafish sequences represent IIe keratins and that the biochemically identified K8 ortholog in zebrafish has not yet been sequenced.  相似文献   

8.
9.
Five different type I keratins from a teleost fish, the rainbow trout Oncorhynchus mykiss, have been sequenced by cDNA cloning and identified at the protein level by peptide mass mapping using MALDI-MS. This showed that the entire range of type I keratins detected biochemically in this fish has now been sequenced. Three of the keratins are expressed in the epidermis (subtype Ie), whereas the other two occur in simple epithelia and mesenchymal cells (subtype Is). Among the Is keratins is an ortholog of human K18; the second Is polypeptide is clearly distinct from K18. We raised a new monoclonal antibody (F1F2, subclass IgG1) that specifically recognizes trout Is keratins, with negative reactions on zebrafish. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new sequences together with type I sequences from other vertebrates such as shark, zebrafish, and human; a recently sequenced lamprey Is keratin was applied as outgroup. This tree shows one branch defining the K18 orthologs and a second branch containing all other type I keratins (mostly subtype Ie). Within this second branch, the teleost keratins form a separate, highly bootstrap-supported twig. This tree leaves little doubt that the teleost Ie keratins diversified independently from the mammalian Ie keratins.  相似文献   

10.
The "thread keratins (TK)" alpha and gamma so far have been considered highly specialized intermediate filament (IF) proteins restricted to hagfish. From lamprey, we now have sequenced five novel IF proteins closely related to TKalpha and TKgamma, respectively. Moreover, we have detected corresponding sequences in EST and genomic databases of teleosts and amphibians. The structure of the TKalpha genes and the positions of their deduced amino acid sequences in a phylogenetic tree clearly support their classification as type II keratins. The genes encoding TKgamma show a structure typical for type III IF proteins, whereas their positions in phylogenetic trees favor a close relationship to the type I keratins. Considering that most keratin-like sequences detected in the lancelet also exhibit a gene structure typical for type III IF proteins, it seems likely that the keratin gene(s) originated from an ancient type III IF protein gene. According to EST analyses, the expression of the thread keratins in teleost fish and amphibians may be particularly restricted to larval stages, which, in conjunction with the observed absence of TKalpha and TKgamma genes in any of the available Amniota databases, indicates a thread keratin function closely related to larval development in an aquatic environment.  相似文献   

11.
Mutations in genes encoding epidermal keratins cause skin disorders, while those in internal epithelial keratins, such as K8 and K18, are risk factors for liver diseases. The effect of dominant mutations in K8 or K18 during embryonic development and tissue homeostasis has not been examined so far. Here we demonstrate that the dominant mutation hK18 R89C, that is highly similar to hK14 R125C, causing EBS in humans, leads to cell type-specific lethality in mice, depending on the ratio of mutant to endogenous keratins. Mice expressing hK18 R89C in the absence of endogenous K19 and K18 died at mid-gestation from defects in trophoblast giant cells, accompanied by haematomas. A single, endogenous K18 allele rescued embryonic lethality but caused aggregation of keratins in all adult internal epithelia, surprisingly without spontaneous cell fragility. Closer analysis revealed that both filaments and aggregates coexisted in the same cell, depending on the ratio of mutant to endogenous keratins. Our results demonstrate that balanced overexpression of a wild-type keratin rescued the lethal consequences of a dominant-negative mutation. This has important implications for therapy approaches of keratinopathies, suggesting that suppressing the mutant allele is not necessary in vivo.  相似文献   

12.
13.
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament (IF) proteins that are expressed in glandular epithelia. Although the mechanism of keratin turnover is poorly understood, caspase-mediated degradation of type I keratins occurs during apoptosis and the proteasome pathway has been indirectly implicated in keratin turnover based on colocalization of keratin-ubiquitin antibody staining. Here we show that K8 and K18 are ubiquitinated based on cotransfection of His-tagged ubiquitin and human K8 and/or K18 cDNAs, followed by purification of ubiquitinated proteins and immunoblotting with keratin antibodies. Transfection of K8 or K18 alone yields higher levels of keratin ubiquitination as compared with cotransfection of K8/18, likely due to stabilization of the keratin heteropolymer. Most of the ubiquitinated species partition with the noncytosolic keratin fraction. Proteasome inhibition stabilizes K8 and K18 turnover, and is associated with accumulation of phosphorylated keratins, which indicates that although keratins are stable they still turnover. Analysis of K8 and K18 ubiquitination and degradation showed that K8 phosphorylation contributes to its stabilization. Our results provide direct evidence for K8 and K18 ubiquitination, in a phosphorylation modulated fashion, as a mechanism for regulating their turnover and suggest that other IF proteins could undergo similar regulation. These and other data offer a model that links keratin ubiquitination and hyperphosphorylation that, in turn, are associated with Mallory body deposits in a variety of liver diseases.  相似文献   

14.
15.
16.
17.
Summary The expression of vimentin and keratins is analysed in the early postimplantation embryo of the rabbit at 11 days post conceptionem (d.p.c.) using a panel of monoclonal antibodies specific for single intermediate filament polypeptides (keratins 7, 8, 18, 19 and vimentin) and a pan-epithelial monoclonal keratin antibody. Electrophoretic separation of cytoskeletal preparations obtained from embryonic tissues, in combination with immunoblotting of the resulting polypeptide bands, demonstrates the presence of the rabbit equivalents of human keratins 8, 18, and vimentin in 11-day-old rabbit embryonic tissues. Immunohistochemical staining shows that several embryonic epithelia such as notochord, surface ectoderm, primitive intestinal tube, and mesonephric duct, express keratins, while others (neural tube, dermomyotome) express vimentin, and a third group (coelomic epithelia) can express both. Similarly, of the mesenchymal tissues sclerotomal mesenchyme expresses vimentin, while somatopleuric mesenchyme (abdominal wall) expresses keratins, and splanchnopleuric mesenchyme (dorsal mesentery) expresses both keratins and vimentin. While these results are in accordance with most results of keratin and vimentin expression in embryos of other species, they stand against the common concept of keratin and vimentin specificity in adult vertebrate tissues. Furthermore, keratin and vimentin are not expressed in accordance with germ layer origin of tissues in the mammalian embryo; rather the expression of these proteins seems to be related to cellular function during embryonic development.Supported by the Deutsche Forschungsgemeinschaft and by the Netherlands Cancer Foundation  相似文献   

18.
Two families of keratins, type I and type II, can be distinguished within the intermediate filament family of proteins, and at least 20 genes in the human genome code for the 20 known keratin proteins. In epithelial intermediate filaments, keratins from both families appear to be coordinately expressed. We have screened a library of human genomic DNA and have identified several cases of linkage among homologous and heterologous pairs of keratin genes. Genes coding for type I keratins were found linked to those coding for type II keratins. Linkage was discovered also among homologous genes coding for type I keratins and among genes encoding type II keratins. In addition, we found genes coding for glycine-rich keratins linked to genes coding for those that do not contain glycine-rich regions. Our results raise the possibility that all keratin genes are linked in a single region of the human genome.  相似文献   

19.
Lungfishes are possibly the closest extant relatives of the land vertebrates (tetrapods). We report here the cDNA and predicted amino acid sequences of 13 different keratins (ten type I and three type II) of the lungfish Protopterus aethiopicus. These keratins include the orthologs of human K8 and K18. The lungfish keratins were also identified in tissue extracts using two-dimensional polyacrylamide gel electrophoresis, keratin blot binding assays and immunoblotting. The identified keratin spots were analyzed by peptide mass fingerprinting which assigned seven sequences (inclusively Protopterus K8 and K18) to their respective protein spot. The peptide mass fingerprints also revealed the fact that the major epidermal type I and type II keratins of this lungfish have not yet been sequenced. Nevertheless, phylogenetic trees constructed from multiple sequence alignments of keratins from lungfish and distantly related vertebrates such as lamprey, shark, trout, frog, and human reveal new insights into the evolution of K8 and K18, and unravel a variety of independent keratin radiation events.  相似文献   

20.
The human keratins: biology and pathology   总被引:8,自引:2,他引:6  
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins--including numerous keratins characterized only recently--are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号