首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary We have analyzed the restriction digest patterns of the mitochondrial DNA from 41 cytoplasmic petite strains of Saccharomyces cerevisiae, that have been extensively characterized with respect to genetic markers. Each mitochondrial DNA was digested with seven restriction endonucleases (EcoRI, HpaI, HindIII, BamHI, HhaI, SalI, and PstI) which together make 41 cuts in grande mitochondrial DNA and for which we have derived fragment maps. The petite mitochondrial DNAs were also analyzed with HpaII, HaeIII, and AluI, each of which makes more than 80 cleavages in grande mitochondrial DNA. On the basis of the restriction patterns observed (i.e., only one fragment migrating differently from grande for a single deletion, and more than one for multiple deletions) and by comparing petite and grande mitochondrial DNA restriction maps, the petite clones could be classified into two main groups: (1) petites representing a single deletion of grande mitochondrial DNA and (2) petites containing multiple deletions of the grande mitochondrial DNA resulting in rearranged sequences. Single deletion petites may retain a large portion of the grande mitochondrial genome or may be of low kinetic cimplexity. Many petites which are scored as single continuous deletions by genetic criteria were later demonstrated to be internally deleted by restriction endonuclease analysis. Heterogeneous sequences, manifested by the presence of sub-stoichiometric amounts of some restriction fragments, may accompany the single or multiple deletions. Single deletions with heterogeneous sequences remain useful for mapping if the low concentration sequences represent a subset of the stoichiometric bands. Using a group of petites which retain single continuous regions of the grande mitochondrial DNA, we have physically mapped antibiotic resistance and mit- markers to regions of the grande restriction map as follows: C (99.3-1.4 map units)-OXI-1 (2.5-15.7)-OXI-2 (18.5-25)-P (28.1-34.2)-OXI-3 (32.2-61.2)-OII (60-62)-COB (64.6-80.8)-OI (80.4-85.7)-E (95-98.9).Supported by USPHS Training Grant 5-T01-GM-00090-19.Supported by USPHS Training Grant T32-GM-07197.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

2.
3.
4.
5.
This paper describes the physical mapping of five antibiotic resistance markers on the mitochondrial genome of Saccharomyces cerevisiae. The physical separations between markers were derived from studies involving a series of stable spontaneous petite strains which were isolated and characterized for the loss or retention of combinations of the five resistance markers. DNA-DNA hybridization using 32P-labelled grande mitochondrial DNA was employed to determine the fraction of grande mitochondrial DNA sequences retained by each of the defined petite strains.One petite clone retaining four of the markers in a segment comprising 36% of the grande genome was then chosen as a reference petite. The sequence homology between the mitochondrial DNA of this petite and that of the other petites was measured by DNA-DNA hybridization. For each petite, the total length of its genome derived by hybridization with grande mitochondrial DNA and the fraction of the grande genome retained in common with the reference petite, together with the genetic markers retained in common, were used to position the DNA segment of each petite relative to the reference petite genome. At the same time the relative physical location of the five markers on a circular genome was established. On the basis of the grande mitochondrial genome being defined as 100 units of DNA, the positions of the markers were determined to bo as follows, measuring from one end of the reference petite genome. chloramphenicol (cap1) ~ 0 units erythromycin (ery1) 0 to 15 units oligomycin (oli1) 18 to 19 units mikamycin (mik1) 22 to 25 units paromomycin (par1) 61 to 73 unitsThe general problems of mapping mitochondrial genetic markers by hybridizations involving petite mitochondrial DNA are discussed. Two very important features of petite genomes which could invalidate the interpretation of DNA-DNA hybridization experiments between petite mitochondrial DNAs are the possible presence in the reference petite of differentially amplified DNA sequences, and/or “new” sequences which are not present in the parent grande genome. A general procedure, which overcomes errors of interpretation arising from these two features is described.  相似文献   

6.
Summary Ninety five rho- mitochondrial DNA's of Saccharomyces cerevisiae were compared for their deletion structure by means of 15 genetic markers and 22 tRNA genes. The patterns of co-deletion and coretention of different tRNA genes allowed us to determine their positions with respect to each other. The deduced order of tRNA genes was consistent with the order of the genetic markers established by independent genetic approaches. Our previously proposed mitochondrial tRNA gene map has been revised and extended. Transfer RNA genes, corresponding to all 20 aminoacids, and two isoacceptor tRNA genes were localized. The possible position of each tRNA gene has been indicated on the physical map of mitochondrial DNA. Seventeen tRNA genes are carried by a narrow region representing less than 20% of the wild type genome.Abbreviations tRNA transfer RNA - mRNA messenger RNA - rRNA ribosomal RNA - mitDNA mitochondrial DNA - nucDNA nuclear DNA - EDTA ethylenediaminetetraacetate - C, E, OI, OII and P drug resistance genetic loci - Rib I, Rib III OI, OII and PI respectively. The three letter symbols for amino acids (ala, cys, etc...) designate tRNA genes corresponding to each amino acid Formerly Fondation Curie, Institut du Radium  相似文献   

7.
Summary Two PstI fragments (5.3x106 and 4.3x106 daltons) coding for Anacystis nidulans rRNA genes were cloned. The cloned rDNAs were characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis and the R-loop technique. The results indicated that both fragments contained 16S, 23S and 5S rRNA genes in this order. A tRNA gene(s) was detected in the spacer region between 16S and 23S rRNA genes. The organization of A. nidulans rRNA genes resembles those of E. coli and of Euglena chloroplasts rather than those of higher plant chloroplasts.  相似文献   

8.
Summary Mitochondrial and nuclear mutants resistant to myxothiazol were isolated and characterized. The mitochondrial mutants could be assigned to two loci, myx1 and myx2, by allelism tests. The two loci map in the box region, the split gene coding for apocytochrome b. Locus myx1 maps in the first exon (box4/5) whereas myx2 maps in the last exon (box6). The nuclear mutants could be divided into three groups: two groups of recessive mutations and one of dominant mutations. Respiration of isolated mitochondria from mitochondrial mutants is resistant to myxothiazol. These studies support the conclusion that myxothiazol is an inhibitor of the respiratory chain of yeast mitochondria. The site of action of myxothiazol is mitochondrial cytochrome b.Abbreviations box mosaic gene coding for apocytochrome b - cyt b cytochrome b - MIC minimum inhibitory concentration - MNNG N-methyl-N'-nitro-N-nitrosoguanidine - Myx R/Myx S allelte forms of a locus conferring myxothiazol resistance - myx1, myx2 mitochondrial loci conferring myxothiazol resistance - rho +/rho grande/cytoplasmic petite - rho 0 cytoplasmic petite that is deleted of all mitochondrial DNA  相似文献   

9.
Six purified tRNAs labeled with 125I by chemical or enzymatic methods were hybridized to polytene chromosomes of Drosophila melanogaster. The main chromosomal regions of hybridization were: tRNA GGA Gly , 58A, 84C, and 90E; tRNA 2 Leu , 44E, 66B5-8, and 79F; tRNA 2b Ser , 86A, 88A9-12, and 94A6-8; tRNA 3 Thr , 47F and 87B; tRNA 4 Thr , 93A1-2; and tRNA 1 Tyr , 19F, 22F-23A, 41, 50C1-4 and 85A. At 50C the hybridization of tRNA 1 Tyr was polymorphic in the giant strains. When the hybridization of three valine isoacceptors studied previously was re-investigated, it was found that only one hybridization site, 90BC, was shared between tRNA 3b Val and tRNA 4 Val . tRNA 3a Val did not have any sites in common with the other two.  相似文献   

10.
We have obtained collections of recombinant Escherichia coli plasmids containing restriction fragments of Neurospora crassa mitochondrial DNA cloned into pBR322. By hybridization of 32P end-labeled total mitochondrial tRNAs and seven different purified tRNAs to restriction digests of mitochondrial DNA and of recombinant plasmids carrying specific restriction fragments, we have located the tRNA genes on the mitochondrial DNA. We have found that the mitochondrial tRNA genes are present in two major clusters, one between the two ribosomal RNA genes and the second closely following the large rRNA gene. Only one of the two DNA strands within these clusters codes for tRNAs. All of the genes for the seven specific purified tRNAs examined--those for alanine, formylmethionine, leucine 1, leucine 2, threonine, tyrosine, and valine--lie within these clusters. Interestingly, the formylmethionine tRNA hybridizes to two loci within one of these gene clusters. We have obtained a fairly detailed restriction map of part of this cluster and have shown that the two "putative" genes for formylmethionine tRNA are not arranged in tandem but are separated by more than 900 base pairs and by at least two other tRNA genes, those for alanine and for leucine 1 tRNAs.  相似文献   

11.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

12.
Several instances of mitochondrial DNA heterogeneity in grande and petite strains of Saccharomyces cerevisiae were examined. We have detected heterogeneity in the mtDNA from some of the progeny strains of a cross between two grande strains (D273-10B, MH41-7B) which differ in genome size and restriction cleavage pattern of their mtDNA. The progeny strains transmit restriction fragments characteristic of both parental strains from homologous regions of the mitochondrial genome, and this sequence heterogeneity is not eliminated by additional subcloning. Sequence diversity is more common in the mtDNA of petite than of grande strains of yeast. We have examined subclones of one petite strain to identify the origin of this variability. Many of the submolar restriction fragments persist in independent subclones of this petite after 15 and 30 cell divisions; some submolar fragments disappear, and some new fragments appear. We conclude that the observed sequence heterogeneity is due to molecular heterogeneity, i.e., to differences in the multiple copies of the petite mitochondrial genome, as well as to clonal heterogeneity. It is likely that tandem repeats on the same mtDNA molecule also differ, i.e., that there is intramolecular heterogeneity, and that this accounts for the stability of the heterogeneity. Continuing deletion is probably responsible for the appearance of “new” fragments in petite subclones.  相似文献   

13.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

14.
Mitochondrial glutamyl-tRNA isolated from mitochondria of Saccharomyces cerevisiae was separated into two distinct species by re versed-phase chromatography. The migration of the two mitochondrial glutamyl-tRNAs (tRNAIGlu and tRNAIIGlu) differed from that of two glutamyl-tRNA species found in the cytoplasm of a mitochondrial DNA-less petite strain. Both mitochondrial tRNAs hybridized with mitochondrial DNA. Three lines of evidence demonstrate that mitochondrial tRNAIGlu and tRNAIIGlu are transcribed from different mitochondrial cistrons. First the level of hybridization of a mixture of the two tRNAs to mitochondrial DNA was equal to the sum of the saturation hybridization levels of each glutamyl-tRNA alone. Second, the two mitochondrial glutamyl-tRNAs did not compete with each other in hybridization competition experiments. Finally the tRNAs showed individual hybridization patterns with different petite mitochondrial DNAs.Hybridization of the tRNAs to mitochondrial DNA of genetically defined petite strains localized each tRNA with respect to antibiotic resistance markers. The two glutamyl-tRNA cistrons were spatially separated on the genetic map.  相似文献   

15.
Summary Mitochondrial movements in Saccharomyces cerevisiae (Sc) zygotes were monitored with phase-contrast microscopy and compared to known mitochondrial inheritance systems. The mitochondria of Sc were convincingly identified by integrated use of phase-contrast, cytochemical and electron microscopic observations. Mitochondria in Sc appear to move by saltatory jumps, which appear to be oriented towards movement of mitochondria into developing buds. Tracking of mitochondria of different genotypes was made possible by positive identification of each mitochondrial population before zygosis, and by the low degree of mixing (<10%) of mitochondrial populations before first bud septation.A grande by grande cross demonstrated equal numbers of mitochondria from each haploid moving into the first zygotic bud. A grande by neutral petite cross gave a 2:1 ratio of grande to petite mitochondria. However, a grande by suppressive petite cross gave equal numbers of grande and petite mitochondria. Using drug resistance systems, a comparison was made of highly biased (97%) and moderately biased (71%) chloramphenicol resistant inheritance patterns. In both cases, the ratios of drug resistant to sensitive mitochondria were 1:1. When numbers of mitochondria moving into an individual bud were compared to the phenotypic content of the clone of that bud, no model could be constructed which could predict the latter from the former. The data indicate (with the exception of the neutral petite by grande cross) that the numbers of each mitochondrial type inserted into the first zygotic bud are equal, regardless of the degree of asymmetry of inheritance of mitochondrial markers.  相似文献   

16.
A W Linnane  P Nagley 《Plasmid》1978,1(3):324-345
The attainment of the map of functions coded in the yeast mitochondrial genome represents the end of an era of development in mitochondrial genetics. Following the earliest genetic studies, where first the respiration-deficient petite mutants, then subsequently the other types of mitochondrial mutants, were characterized, it was realized that a genetic approach to the questions of mitochondrial biogenesis and the genetic function of mtDNA would yield much useful information. A period of intensive investigation into the behavior of mitochondrial genes in genetic crosses followed, and it was concluded that the purely genetic techniques of transmissional and recombinational analysis could not yield a map of the genetic loci, although basic rules for mitochondrial genetic manipulation were established. The concurrent studies of the nature of the deletions in petite mtDNA led to the recognition that an analysis of the behavior of genetic loci in petite mutants would provide the method for genetically mapping the positions of loci in mtDNA where conventional genetic crosses between grande strains had failed. This thesis was first confirmed by our studies of the frequencies of coretention and loss of individual loci in large populations of petite isolates, which produced the first circular genetic map of drug resistance loci on mtDNA. Subsequent to this genetic mapping phase, we established a general procedure for determining the physical map position of any mitochondrial genetic locus or mtDNA sequence by introducing the use of a molecular library of petite mutants carrying physically and genetically defined segments of mtDNA. These petites can be tested for the retention or loss of genetic loci or particular nucleotide sequences. This general solution to the mapping problem and the physical map of the Saccharomyces cerevisiae mitochondrial genome obtained, which has been confirmed by studies using restriction enzymes, has provided the field with a molecular point of reference for the many current genetic and biochemical investigations into the structure and function of mtDNA in yeast.  相似文献   

17.
18.
Summary Mitochondrial transfer RNA genes have been ordered relative to the position of five mitochondrial drug resistance markers, namely, chloramphenicol (C), erythromycin (E), oligomycin I and II (OI, OII), and paromomycin (P). Forty-six petite yeast clones that were genetically characterized with respect to these markers were used for a study of these relationships. Different regions of the mitochondrial genome are deleted in these individual mutants, resulting in variable loss of genetic markers. Mitochondrial DNA was isolated from each mutant strain and hybridized with eleven individual mitochondrial transfer RNAs. The following results were obtained: i) Of the seven petite clones that retained C, E, and P resistance markers (but not OI or OII), four carried all eleven transfer RNA genes examined; the other three clones lost several transfer RNA genes, probably by secondary internal deletion; ii) Prolyl and valyl transfer RNA genes were located close to the P marker, whereas the histidyl transfer RNA gene was close to the C marker; iii) Except for a glutamyl transfer RNA gene that was loosely associated with the OI region, no other transfer RNA genes were found in petite clones retaining only the OI and/or the OII markers; and iv) Two distinct mitochondrial genes were found for glutamyl transfer RNA, they were not homologous in DNA sequence and were located at two separate loci.The data indicate that the petite mitochondrial genome is the result of a primary deletion followed by successive additional deletions. Thus an unequivocal gene arrangement cannot be readily established by deletion mapping with petite mutants alone. Nevertheless, we have derived a tentative circular map of the yeast mitochondrial genome from the data; the map indicates that all but one of the transfer RNA genes are found between the C and P markers without forming a tight cluster. The following arrangement is suggested:-P-pro-val-ile-(phe, ala, tyr, asp)-glu2-(lys-leu)-his-C-E-OI-glu1-OII-P-.Supported in part by Cancer Center CCRC 111B-3. Present address: Laboratoire de Biologie Generale, Universite Paris-Sud Orsay, 91405, FranceThe Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract E(11-1)69  相似文献   

19.
Summary The characteristics of recombination of several petite (rho -) mutants of S. cerevisiae that retain the -influenced region of the mitochondrial genome, identified by the markers cap1-r, ery1-r and tsr1, are described. The petites were derived from an grande (rho +) strain and those petites which retain all three markers show recombination properties similar to those of the - parental strain. However, other rho - mutants that retain the cap1 and ery1 loci but have lost the tsr1 locus, which is located between cap1 and ery1, show markedly different properties of mitochondrial transmission and recombination, consistent with the presence of + alleles. The association of an internal deletion between the cap1 and ery1 loci with a change in phenotype provides additional evidence for the location of between these two loci.Although the petites deleted for the tsr1 locus exhibited the recombination properties of + strains, it was not possible to transmit this characteristic to rho + recombinant cells. Experiments on the kinetics of elimination by ethidium bromide of the cap1 and eryl markers from the petites and measurements of the buoyant densities of their mtDNA species did not indicate major changes (such as selective sequence repetition) in the sequences of the mtDNAs. The possible nature of the changes in the mtDNAs of these petites is discussed in light of recent studies on the physical nature of the alleles.  相似文献   

20.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号