首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive hydrogen bonding of dyes to connective tissue fibers is made possible by the high content of the amino acids proline and glycine in elastin and collagens. Proline confers an extended polypeptide structure and glycine is the only amino acid whose specific side group, –H, is so small that it forms no obstacle to hydrogen bonding between the peptide group and external molecules. Thus, a high proportion of the peptide groups in fibrous proteins are directly accessible to hydrogen bonding groups dye molecules.  相似文献   

2.
Eleven oxytocin analogues substituted in position 4, 5 or 9 by tetrazole analogues of amino acids were prepared using solid-phase peptide synthesis method and tested for rat uterotonic in vitro and pressor activities, as well as for their affinity to human oxytocin receptor. The tetrazolic group has been used as a bioisosteric substitution of carboxylic, ester or amide groups in structure-activity relationship studies of biologically active compounds. Replacement of the amide groups of Gln(4) and Asn(5) in oxytocin by tetrazole analogues of aspartic, glutamic and alpha-aminoadipic acids containing the tetrazole moiety in the side chains leads to analogues with decreased biological activities. Oxytocin analogues in which the glycine amide residue in position 9 was substituted by tetrazole analogues of glycine had diminished activities as well. The analysis of differences in rat uterotonic activity and in the affinity to human oxytocin receptors of analogues containing either an acidic 5-substituted tetrazolic group or a neutral 1,5- or 2,5-tetrazole nucleus makes it possible to draw some new conclusions concerning the role of the amide group of amino acids in positions 4, 5 and 9 of oxytocin for its activity. The data suggest that the interaction of the side chain of Gln(4) with the oxytocin receptor is influenced mainly by electronic effects and the hydrogen bonding capacity of the amide group. Steric effects of the side chain are minor. Substitution of Asn(5) by its tetrazole derivative gave an analogue of very low activity. The result suggests that in the interaction between the amide group of Asn(5) and the binding sites of oxytocic receptor hydrogen bonds are of less importance than the spatial requirements for this group.  相似文献   

3.
For the first time tripeptides, Z-AA(1)-Xaa-AA(3)-OMe (AA(1) and AA(3) = Gly or Aib, Xaa = 2Pmg and 2Pyg) were prepared containing alpha-methyl-alpha-(2-pyridyl)glycine (2Pmg) and alpha-(2-pyridyl)glycine (2Pyg) by solid-phase Ugi reaction. These results clearly indicate that for the preparation of tripeptides containing an amino acid with a pyridine ring, the solid-phase Ugi reaction is very useful.NMR analysis clarified that 2Pmg-containing tripeptides adopt a unique conformation with an intramolecular hydrogen bond between 2Pmg-NH and the pyridine nitrogen. However, in the case of Z-Gly-2Pyg-Gly-OMe, the intramolecular hydrogen bonding between 2Pyg-NH and the pyridine nitrogen was not observed, whereas Z-Aib-2Pyg-Aib-OMe adopts a unique conformation with an intramolecular hydrogen bond between 2Pyg-NH and a pyridine nitrogen. Conformational analysis of the tripeptides, Z-AA(1)-Xaa-AA(3)-OMe (AA(1), AA(3) = Gly or Aib, Xaa = alpha,alpha-di(2-pyridyl)glycine (2Dpy), alpha-phenyl-alpha-(2-pyridyl)glycine (2Ppg), 2Pmg and 2Pyg), clarified that when an alpha,alpha-disubstituted glycine with a 2-pyridyl group at an alpha-carbon atom is introduced into any peptide, an intramolecular hydrogen bond between a pyridine nitrogen and an amide proton is formed and conformational mobility of the peptide backbone is restricted.  相似文献   

4.
A new hexaaza macrocyclic ligand (L) bearing two 2-hydroxypropyl pendants, 6,19-bis(2-hydroxypropyl)-3,6,9,16,19,22-hexaaza-tricyclo-[22.2.2.2(11,14)]triaconta-11,13,24,26,27,29-hexaene has been synthesized and characterized. The macrocyclic ligand was isolated as a colorless crystal, monoclinic, P2(1)/n, with a=10.757(2), b=14.214(3), c=13.746(3) A, beta=101.40(3) degrees, V=2060.3(7) A3, Z=2, R1=0.0695, and wR2=0.1538 [I>2sigma(I)]. Potentiometric studies of the macrocyclic ligand and three types of amino acids, glycine (equal numbers of carboxylate and amino groups), aspartic acid (more carboxylate groups than amino group), and lysine (more amino groups than carboxylate group) have been performed. The stability constants for the new macrocycle and binary complexes of the amino acid with the macrocyclic ligand are reported. Binary complexes are formed in aqueous solution as a result of hydrogen bonding interaction and electrostatic attraction between the host and the guest. The binding Schemes for the recognition of amino acids are suggested. From the results, it seems that this new macrocyclic ligand is able to bind three different amino acids with selectivity in aqueous solution, and the strength of binding is of the order lysine < glycine < aspartic acid.  相似文献   

5.
An isolated uncharged hydrogen bond acceptor such as the carbonyl functionality of an aldehyde or a keto group is absent in natural amino acids. Although glutamine and asparagine are known to hydrogen bond through the amide carbonyl group in their side chains, they also possess the amide ? NH2 group, which can act as a hydrogen bond donor. This makes the structural study of peptides containing an oxo residue, with an isolated carbonyl group in the side chain, interesting. Here, we report the synthesis of δ‐ and ε‐oxo amino acids and their incorporation into oligopeptides as the N‐terminal residue. The resultant oxo peptides were extensively studied using X‐ray crystallography to understand the interactions offered by the oxo group in peptide crystals. We find that the oxo groups are capable of providing additional hydrogen bonding opportunities to the peptides, resulting in increased intermolecular interactions in crystals. The study thus offers avenues for the utilization of oxo residues to introduce intermolecular interactions in synthetic peptides.  相似文献   

6.
The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry–wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.  相似文献   

7.
A continuous chain of hydrogen bonded groups, which forms cross-hands interaction between domains in molecules of pepsin-like enzymes, has been revealed. The chain contains a pair of 6 symmetrically related hydrogen bonds between main chain atoms and the two conserved water molecules. The peptide groups forming hydrogen bond with the inner oxygens of the active carboxyls are important elements of the chain. The so-called "fireman grip" hydrogen bonding, consisting of a pair of the two symmetrically related bonds, is an integral part of this system of interactions. One of the water molecules in this system has a zero accessibility and forms a very short hydrogen bond with the active site interacting peptide group. This chain connects tightly the two regions of domains which have a high correlation in conformational mobility. The retroviral enzymes have an abortive chain of the interdomain interaction in this region which is reduced to the "fireman grip" net.  相似文献   

8.
Investigations of enzyme action typically focus on elucidating the catalytic roles of hydrogen bonding interactions between polar active-site residues and substrate molecules. Less clear is the importance of non-hydrogen bonding contacts to enzymatic rate accelerations. To investigate the importance of such interactions in a model system, six residues that participate in van der Waals contacts with substrate glucose within the active site of Escherichia coli glucokinase were individually randomized via site-directed mutagenesis. In vivo selection in a glucokinase-deficient bacterium was employed to identify amino acid substitutions that were complicit with enzyme activity. The results suggest that small residues, such as alanine and glycine, are largely immutable, whereas larger amino acids are more tolerant of diverse substitution patterns. Surprisingly, a glucokinase variant that contains glycine in place of six non-hydrogen bonding contacts retains approximately 1% of the wild-type activity. These findings establish non-hydrogen bonding shape determinants as highly appealing targets for widespread substitution during efforts to redesign the catalytic properties of natural enzymes.  相似文献   

9.
Formaldehyde is a well known cross-linking agent that can inactivate, stabilize, or immobilize proteins. The purpose of this study was to map the chemical modifications occurring on each natural amino acid residue caused by formaldehyde. Therefore, model peptides were treated with excess formaldehyde, and the reaction products were analyzed by liquid chromatography-mass spectrometry. Formaldehyde was shown to react with the amino group of the N-terminal amino acid residue and the side-chains of arginine, cysteine, histidine, and lysine residues. Depending on the peptide sequence, methylol groups, Schiff-bases, and methylene bridges were formed. To study intermolecular cross-linking in more detail, cyanoborohydride or glycine was added to the reaction solution. The use of cyanoborohydride could easily distinguish between peptides containing a Schiff-base or a methylene bridge. Formaldehyde and glycine formed a Schiff-base adduct, which was rapidly attached to primary N-terminal amino groups, arginine and tyrosine residues, and, to a lesser degree, asparagine, glutamine, histidine, and tryptophan residues. Unexpected modifications were found in peptides containing a free N-terminal amino group or an arginine residue. Formaldehyde-glycine adducts reacted with the N terminus by means of two steps: the N terminus formed an imidazolidinone, and then the glycine was attached via a methylene bridge. Two covalent modifications occurred on an arginine-containing peptide: (i) the attachment of one glycine molecule to the arginine residue via two methylene bridges, and (ii) the coupling of two glycine molecules via four methylene bridges. Remarkably, formaldehyde did not generate intermolecular cross-links between two primary amino groups. In conclusion, the use of model peptides enabled us to determine the reactivity of each particular cross-link reaction as a function of the reaction conditions and to identify new reaction products after incubation with formaldehyde.  相似文献   

10.
Pace CN 《Biochemistry》2001,40(2):310-313
On the basis of studies of Asn to Ala mutants, the gain in stability from burying amide groups that are hydrogen bonded to peptide groups is 80 cal/(mol A(3)). On the basis of similar studies of Leu to Ala and Ile to Val mutants, the gain in stability from burying -CH(2)- groups is 50 cal/(mol A(3)). Thus, the burial of an amide group contributes more to protein stability than the burial of an equivalent volume of -CH(2)- groups. Applying these results to folded proteins leads to the surprising conclusion that peptide group burial makes a larger contribution to protein stability than nonpolar side chain burial. Several studies have shown that the desolvation penalty for burying peptide groups is considerably smaller than generally thought. This suggests that the hydrogen bonding and van der Waals interactions of peptide groups in the tightly packed interior of folded protein are more favorable than similar interactions with water in the unfolded protein.  相似文献   

11.
Contrary to the widespread view that hydrogen bonding and its entropy effect play a dominant role in protein folding, folding into helical and hairpin-like structures is observed in molecular dynamics (MD) simulations without hydrogen bonding in the peptide-solvent system. In the widely used point charge model, hydrogen bonding is calculated as part of the interaction between atomic partial charges. It is removed from these simulations by setting atomic charges of the peptide and water to zero. Because of the structural difference between the peptide and water, van der Waals (VDW) interactions favor peptide intramolecular interactions and are a major contributing factor to the structural compactness. These compact structures are amino acid sequence dependent and closely resemble standard secondary structures, as a consequence of VDW interactions and covalent bonding constraints. Hydrogen bonding is a short range interaction and it locks the approximate structure into the specific secondary structure when it is included in the simulation. In contrast to standard molecular simulations where the total energy is dominated by charge-charge interactions, these simulation results will give us a new view of the folding mechanism.  相似文献   

12.
How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding.  相似文献   

13.
Interleukin-5 receptor alpha is a therapeutic target for hypereosinophilic diseases including allergic inflammations and asthma. The cyclic peptide AF17121 (Ac-VDE[CWRIIASHTWFC]AEE-CONH(2)) has been identified as a submicromolar inhibitor of interleukin 5 (IL5)-interleukin 5 receptor alpha (IL5Ralpha) interaction from a random peptide screen. However, this inhibitor has limitations as a drug lead because of its relatively large size. We used chemical synthesis of peptides with natural and non-natural amino acids along with kinetic binding and cell proliferation competition assays to expand definition of structural elements in the peptide that are important for receptor antagonism and to elucidate the underlying pharmacophore. We found that the specific steric array of hydrogen bonding groups in the Arg 6 guanido side chain is critical for receptor inhibition. We also investigated noncharged structural elements in AF17121. Screening a set of five hydrophobic residues showed that peptide function is strongly sensitive to variations in several of these residues, most prominently Ile 7 and Trp 13. We postulate that presentation of charged, hydrogen bonding and hydrophobic structural elements within the disulfide-constrained peptide drives IL5Ralpha recruitment by AF17121. We hypothesize from these results and previous receptor mutagenesis studies that Arg 6 recruitment of IL5Ralpha occurs through hydrogen bonding as well as charge-charge interactions with Asp 55 in site one of domain 1 of IL5Ralpha, and that this interaction is complemented by additional charged and hydrophobic interactions around the Asp 55 locus. Scaffolding a limited set of structural elements in the inhibitor pharmacophore may be useful for small molecule antagonist design inspired by the peptide.  相似文献   

14.
Interactions between the alpha-helix peptide dipoles and charged groups close to the ends of the helix were found to be an important determinant of alpha-helix stability in a previous study. The charge on the N-terminal residue of the C-peptide from ribonuclease A was varied chiefly by changing the alpha-NH2 blocking group, and the correlation of helix stability with N-terminal charge was demonstrated. An alternative explanation for some of those results is that the succinyl and acetyl blocking groups stabilize the helix by hydrogen bonding to an unsatisfied main-chain NH group. The helix dipole model is tested here with peptides that contain either a free alpha-NH3+ or alpha-COO- group, and no other charged groups that would titrate with similar pKa's. This model predicts that alpha-NH3+ and alpha-COO- groups are helix-destabilizing and that the destabilizing interactions are electrostatic in origin. The hydrogen bonding model predicts that alpha-NH3+ and alpha-COO- groups are not themselves helix-destabilizing, but that an acetyl or amide blocking group at the N- or C-terminus, respectively, stabilizes the helix by hydrogen bonding to an unsatisfied main-chain NH or CO group. The results are as follows: (1) Removal of the charge from alpha-NH3+ and alpha-COO- groups by pH titration stabilizes an alpha-helix. (2) The increase in helix stability on pH titration of these groups is close to the increase produced by adding an acetyl or amide blocking group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Surface proteins of Staphylococcus aureus are anchored to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Sortase A cleaves surface proteins between the threonine (T) and the glycine (G) residues of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine at the C-terminal end of polypeptides and the amino group of pentaglycine cross-bridges of cell wall peptidoglycan. Previous work showed that Cys(184) and His(120) of sortase A are absolutely essential for catalysis; however an active site thiolateimidazolium ion pair may not be formed. The three-dimensional crystal structure of sortase A revealed that Arg(197) is located in close proximity to both the active site Cys(184) and the scissile peptide bond between threonine and glycine. We show here that substitution of Arg(197) with alanine, lysine, or histidine severely reduced sortase A function both in vivo and in vitro, whereas Asn(98), which had earlier been implicated in hydrogen bonding to His(120), was found to be dispensable for catalysis. As the structural proximity of Arg(197) and Cys(184) is conserved in sortase enzymes and as ionization of the Cys(184) sulfhydryl group seems required for sortase activity, we propose that Arg(197) may function as a base, facilitating thiolate formation during sortase-mediated cleavage and transpeptidation reactions.  相似文献   

16.
The molecular conformations of the linear oligopeptides H-(L -Ala)n-L -Pro-OH, with n = 1,2 and 3, have been investigated. 13C nmr observation of the equilibrium between the cis and trans forms of the Ala-Pro peptide bond indicated the occurrence of nonrandom conformations in solutions of these flexible peptides. The formation of the nonrandom species containing the cis form of the Ala-Pro bond was found to depend on the deprotonation of the carboxylic acid group of proline, the solvent, and the ionic strength in aqueous solution. The influence of intramolecular hydrogen bonding on the relative conformational energies of the species containing the cis and trans Ala-Pro peptide bond was studied by comparison of the peptides H-(Ala)n-Pro-OH with analogous molecules where hydrogen bond formation was excluded by the covalent structure. In earlier work a hydrogen bond between the protonated terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue had been suggested to stabilize conformations including trans proline. For the systems described here this hypothesis can be ruled out, since the cis:trans ratio is identical for molecules with methyl ester protected and free protonated terminal carboxylic acid groups of proline. Direct evidence for hydrogen bond formation between the deprotonated terminal carboxylic acid group and the amide proton of the penultimate amino acid residue in the molecular species containing cis proline was obtained from 1H nmr studies. However, the cis:trans ratio of the Ala-Pro bond was not affected by N-methylation of the penultimate amino acid residue, which prevents formation of this hydrogen bond. Overall the experimental observations lead to the conclusion that the relative energies of the peptide conformations including cis or trans proline are mainly determined by intramolecular electrostatic interactions, whereas in the molecules considered, intramolecular hydrogen bonding is a consequence of specific peptide backbone conformations rather than a cause for the occurrence of energetically favored species. Independent support for this conclusion was obtained from model consideration which indicated that electrostatic interactions between the terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue could indeed account for the observed relative conformational energies of the species containing cis and trans proline, respectively.  相似文献   

17.
This paper shows that backbone amide proton titration shifts in polypeptide chains are a very sensitive manifestation of intramolecular hydrogen bonding between carboxylate groups and backbone amide protons. The population of specific hydrogen-bonded structures in the ensemble of species that constitutes the conformation of a flexible nonglobular linear peptide can be determined from the extent of the titration shifts. As an illustration, an investigation of the molecular conformation of the linear peptide H-Gly-Gly-L -Glu-L -Ala-OH is described. The proposed use of amide proton titration shifts for investigating polypeptide conformation is based on 360-MHz 1H-nmr studies of selected linear oligopeptides in H2O solutions. It was found that only a very limited number of amide protons in a polypeptide chain show sizable intrinsic intration shifts arising from through-bond interactions with ionizable groups. These are the amide proton of the C-terminal amino acid residue, the amide protons of Asp and the residues following Asp, and possibly the amide proton of the residue next to the N-terminus. Since the intrinsic titration shifts are upfield, the downfield titration shifts arising from conformation-dependent through-space interactions, in particular hydrogen bonding between the amide protons and carboxylate groups, can readily be identified.  相似文献   

18.
Though diketopiperazines (DKP) are formed in most experiments concerning the prebiotic peptide formation, the molecules have not been paid attention in the studies of chemical evolution. We have found that triglycine, tetraglycine or pentaglycine are formed in aqueous solution of glycine anhydride (DKP) and glycine, diglycine or triglycine, respectively. A reaction of alanine with DKP resulted in the formation of glycylglycylalanine under the same conditions. These results indicate that the formation of the peptide bonds proceeds through the nucleophilic attack of an amino group of the amino acids or the oligoglycines on the DKP accompanied by the ring-opening.The formation of glycine anhydride, di-, tri- and tetraglycine was also observed in a mixed aqueous solution of urea and glycine in an open system to allow the evaporation of ammonia. A probable pathway is proposed for prebiotic peptide formation through diketopiperazine on the primitive Earth.  相似文献   

19.
Fourier transform infrared spectroscopy performed with a high pressure diamond anvil cell was used to study hydrogen bonding between anhydrous phosphatidylcholines and cholesterol at the molar ratio 4:1. The hydroxyl group of cholesterol which acts as a proton donor, engages in strong hydrogen bonding to the sn-2 chain carbonyl group of DMPC, DPPC and HPPC and in weak hydrogen bonding to the phosphate group of all these phospholipids. No evidence of hydrogen bonding between cholesterol and the sn-1 chain carbonyl group of DMPC and DPPC was found. From a comparison of the relative hydrogen-bond strengths between cholesterol or water and the sn-2 chain carbonyl and phosphate groups of all these phospholipids, it is predicted that in aqueous dispersions of cholesterol containing phospholipids, the hydrogen bond of cholesterol to the phosphate group would be replaced by that of water, while the hydrogen bond of cholesterol to the sn-2 chain carbonyl group would remain intact.  相似文献   

20.
Schell D  Tsai J  Scholtz JM  Pace CN 《Proteins》2006,63(2):278-282
The contribution of hydrogen bonds and the burial of polar groups to protein stability is a controversial subject. Theoretical studies suggest that burying polar groups in the protein interior makes an unfavorable contribution to the stability, but experimental studies show that burying polar groups, especially those that are hydrogen bonded, contributes favorably to protein stability. Understanding the factors that are not properly accounted for by the theoretical models would improve the models so that they more accurately describe experimental results. It has been suggested that hydrogen bonds may contribute to protein stability, in part, by increasing packing density in the protein interior, and thereby increasing the contribution of van der Waals interactions to protein stability. To investigate the influence of hydrogen bonds on packing density, we analyzed 687 crystal structures and determined the volume of buried polar groups as a function of their extent of hydrogen bonding. Our findings show that peptide groups and polar side chains that form hydrogen bonds occupy a smaller volume than the same groups when they do not form hydrogen bonds. For example, peptide groups in which both polar groups are hydrogen bonded occupy a volume, on average, 5.2 A3 less than a peptide group that is not hydrogen bonded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号