首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
表面电荷突变与胰蛋白酶底物专一性的改造   总被引:1,自引:0,他引:1  
分别利用酶切重组和“3+1”引物PCR定点突变的方法构建了三个胰蛋白酶表面电荷双突变体;R62D+K97E,R62D+K175E和K97E+K175E。对三在E.cloiX90菌中的表达产物进行了动力学测定,分别得到了三种双突变体在两种pH条件下,水解TAME,TLME两种底物的动力学数据。  相似文献   

2.
本文从含ArgRS306KR基因args306KR的pUC18重组质粒的大肠杆菌TG1转化子中经DEAE-Sephacel和Blue-Sepharose两步柱层析,得到电泳一条带的ArgRS306KR。纯酶的比活为2790单位/毫克。该酶氨酰化和ATP~PPi交换活力的最适pH分别为pH8.3和pH7.5。氨酰化活力对ATP、Arg和tRNA的Km分别为2.6mmol/L、14.0μmol/L和5.0μmol/L:Vmax为7630单位/毫克;koat为9S-1。ATP~PPi交换活力对ATP和Arg的Km分别为8.3mmol/L和99μmol/L;Vmax为16320单位/毫克;kcat为18S-1。  相似文献   

3.
用正丁醇抽提,硫酸铵分级沉淀,DEAE-纤维素和SephacrylS-200柱层析,从南方鲇(Silurus meridionalis Chen)肠粘膜中提取出碱性磷酸酶(AKP)。提纯倍数为39.50倍,比活为68.35μ/mg蛋白,提取酶液经PAGE和SDS-PAGE只呈现一条区带。该酶的分子量为132140,N末端氨基酸为门冬氨酸,最适pH为10.10,7.5>pH>11.5时不稳定,最适温度为40℃左右,对热不很稳定,以磷酸苯二钠为底物其K_m值为1.72×10~(-3)mol/L。Mg~(2+)、Mn~(2+)为该酶的激活剂,KH_2PO_4、L-CyS、ME、DFP、EDTA-Na_2为抑制剂。选用KH_2PO_4和DFP作抑制类型的判断,结果表明,KH_2PO_4属竞争性掏剂,其抑制常数为2.3mmol/L;DFP为非竞争性抑制剂,抑制常数为1.05mmol/L。  相似文献   

4.
中国美绥螨属一新纪录种ANEWLYRECORDEDSPECIESOFAMEROSEIUSFROMChinA¥//(ACARI:AMEROSEllDAE)畏美绥螨Amemiruspovidus(C.L.Koc,1839)中国新纪录。雌螨体长283·3—...  相似文献   

5.
对青藏高原高山冰缘地区毛茛科3种特有植物的核型进行了分析。它们的核型公式(K)、染色体相对长度组成(C.R.L.)和核型不对称系数(As.K%)分别为:青藏金莲花Troliuspumilusvar.tanguticus:K(2n)=6m+8sm(2SAT)+2st,C.R.L.=4L+4M2+4M1+4S,As.K%=63.57,核型属2B型;甘青乌头Aconitumtanguticum为K(2n)=6m+10sm,C.R.L.=4L+8M1+4S,As.K%=62.54,2B型;单花翠雀花Delphiniumcandelabrumvar.monanthum为K(2n)=6m+8sm+2st,C.R.L.=4L+4M2+4M1+6S,As.K%=64.34,属3B型。经同相关近缘种核型资料比较,青藏金莲花核型不对称性和进化程度比金莲花T.chinensis低;甘青乌头的核型不对称性和进化程度在其近缘类群(乌头组Sect.Aconitum)已报道的种之内最低;单花翠雀花核型不对称性和进化水平比翠雀组(Sect.Delphinastrum)已报道的展毛翠雀花D.kamaoensevar.glabrescens、  相似文献   

6.
应用基因工程手段,获得了枯草杆菌蛋白酶E的双突变体基因(M222A,N118S),此基因在枯草芽孢杆菌中表达得到了既抗氧又耐高温的碱性蛋白酶,含M222,N118S碱性蛋白酶基因的枯草杆菌发酵液经过硫酸铵分级沉淀和DEAESephadexA-25阴离子交换层析柱,再在FPLC层析系统上用Hiload26/10SSepharoseHP阳离子交换柱分离得到SDS-PAGE电泳纯的蛋白酶样品。突变体酶的等电点为pH8.9,分子量为27400,用四肽底物测得的动力学参数也有较大的变化。对该突变体酶进行了晶体生长研究,获得了较大的单晶体。  相似文献   

7.
PIC-BE诱导K562/ADM细胞凋亡及逆转其MDR的研究   总被引:6,自引:0,他引:6  
β榄香烯吗素(PIC-BE)是抗癌新药β榄香烯的水溶性衍生物.采用人红白血病的多药耐药性(MDR)细胞株K562/ADM作为实验模型,观察PIC-BE对K562/ADM细胞的生长抑制和凋亡诱导作用,并进而研究其对该细胞MDR的可能影响.结果显示:(1)K562/ADM细胞对ADM具有明显的抗性,与K562细胞相比,抗性倍数约为40倍,而两者对PIC-BE的IC50接近,无显著差异;(2)PIC-BE(10.0~30.0μg/ml)对K562/ADM细胞具有明显的生长抑制和凋亡诱导作用,两种作用的强度在一定的范围内均具药物浓度和作用时间依赖性;(3)低毒剂量PIC-BE(10.0μg/ml)与ADM(4.0μg/ml)联合应用,可显著增强ADM对该细胞的生长抑制和凋亡诱导作用,升高细胞内ADM的浓度,降低该细胞对ADM的IC50,使该细胞对ADM的抗性有数倍逆转.上述结果提示,PIC-BE不仅是一种有效的广谱抗肿瘤剂,而且也是一种有效的MDR逆转剂  相似文献   

8.
研究了大豆液泡膜H+-ATPase泵质子特性。液泡膜H+-ATPase泵质子活性受NEM、NBD-Cl、DCCD和NO3-的抑制。泵质子活性由二价阳离子启动,其有效性依次为Fe2+>Mg2+>Mn2+,它以ATP为最适底物,ADP为竞争性抑制剂;最适pH为7.0,最适温度为50°C。  相似文献   

9.
利用阴离子交换和凝胶过滤柱层析等方法对蟾蜍卵黄外被细胞溶素进行了分离纯化,获得了高纯度的样品.该酶的质量为32kD,其特异性MCA-人工合成底物为Boc-Gln-Arg-Arg-MCA,能被DFP、SBTI、leupeptin和p-AMPSF等蛋白酶抑制剂所强烈抑制,但不受chymostatin、bestatin、E-64和EDTA等的影响,表明该酶是一种丝氨酸类型的蛋白酶  相似文献   

10.
麻蝇幼虫肠液经硫铵沉淀, DEAE-Sephadex A-25离子交换层析, SBBI-Sepharose 4B亲和层析,分离纯化出一种分子量为 16kD的蛋白酶。底物及抑制剂的特异性表明,该酶为类胰蛋白酶。其能够强烈地降解蛋白酶非专一底物酪蛋白和 Hide powder azure,以及类胰蛋白酶专一底物 Bz-Phe-Val-Arg NA, Bz-Pro-Phe-Arg NA和Bz-Val-Gly-Arg NA.该酶又能被丝氨酸蛋白酶抑制剂PMSF,类胰蛋白酶抑制剂 SB-BI和Leupeptin强烈地抑制。蛋白酶在酸性环境下极不稳定,在弱碱环境(pH8.5-9.5)中活性最高。  相似文献   

11.
Julien M  Gros P 《Biochemistry》2000,39(15):4559-4568
Limited trypsin digestion was used to monitor nucleotide-induced conformational changes in wild-type P-glycoprotein (Pgp) as well as in nucleotide binding domain (NBD) Pgp mutants. Purified and reconstituted wild-type or mutant mouse Mdr3 Pgps were preincubated with different hydrolyzable or nonhydrolyzable nucleotides, followed by limited proteolytic cleavage at different trypsin:protein ratios. The Pgp tryptic digestion products were separated by SDS-PAGE followed by immunodetection with the mouse monoclonal anti-Pgp antibody C219, which recognizes a conserved epitope (VVQE/AALD) in each half of the protein. Different trypsin digestion patterns were observed for wild-type Pgp incubated with MgCl(2) alone, MgADP, MgAMP.PNP, MgATP, and MgATP + vanadate. A unique trypsin digestion profile suggestive of enhanced resistance to trypsin was observed under conditions of vanadate-induced trapping of nucleotides (MgATP + vanadate). The trypsin sensitivity profiles of Pgp mutants bearing either single or double mutations in Walker A (K429R, K1072R) and Walker B (D551N, D1196N) sequence signatures of NBD1 and NBD2 were analyzed under conditions of vanadate-induced trapping of nucleotides. The proteolytic cleavage pattern observed for the double mutants K429R/K1072R and D551N/D1196N, and for the single mutants K429R, K1072R, and D1196N were similar and clearly distinct from wild-type Pgp under the same conditions. This is consistent with the absence of ATP hydrolysis and of vanadate-induced trapping of 8-azido-ADP previously reported for these mutants [Urbatsch et al. (1998) Biochemistry 37, 4592-4602]. Interestingly, the trypsin digestion profiles observed under vanadate-induced trapping for the D551N and D1196N mutants were quite different, with the D551N mutant showing a profile resembling that seen for wild-type Pgp. The different sensitivity profiles of Pgp mutants bearing mutations at the homologous residue in NBD1 (D551N) and NBD2 (D1196N) suggest possible structural and functional differences between the two sites.  相似文献   

12.
The sucrose isomerase of Serratia plymuthica AS9 (AS9 PalI) was expressed in Escherichia coli BL21(DE3) and characterized. The half-life of AS9 PalI was 20 min at 45°C, indicating that it was unstable. In order to improve its thermostability, six amino acid residues with higher B-factors were selected as targets for site-directed mutagenesis, and six mutants (E175N, K576D, K174D, G176D, S575D and N577K) were designed using the RosettaDesign server. The E175N and K576D mutants exhibited improved thermostability in preliminary experiments, so the double mutant E175N/K576D was constructed. These three mutants (E175N, K576D, E175N/K576D) were characterized in detail. The results indicate that the three mutants exhibit a slightly increased optimal temperature (35°C), compared with that of the wild-type enzyme (30°C). The mutants also share an identical pH optimum of 6.0, which is similar to that of the wild-type enzyme. The half-lives of the E175N, K576D and E175N/K576D mutants were 2.30, 1.78 and 7.65 times greater than that of the wild-type enzyme at 45°C, respectively. Kinetic studies showed that the Km values for the E175N, K576D and E175N/K576D mutants decreased by 6.6%, 2.0% and 11.0%, respectively, and their kcat/Km values increased by 38.2%, 4.2% and 19.4%, respectively, compared with those of the wild-type enzyme. After optimizing the conditions for isomaltulose production at 45°C, we found that the E175N, K576D and E175N/K576D mutants displayed slightly improved isomaltulose yields, compared with the wild-type enzyme. Therefore, the mutants produced in this study would be more suitable for industrial biosynthesis of isomaltulose.  相似文献   

13.
Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3 h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.  相似文献   

14.
The activity of the digestive beta-glycosidase from Spodoptera frugiperda (Sfbetagly50, pH optimum 6.2) depends on E399 (pKa = 4.9; catalytic nucleophile) and E187 (pKa = 7.5; catalytic proton donor). Homology modelling of the Sfbetagly50 active site confirms that R97 and Y331 form hydrogen bonds with E399. Site-directed mutagenesis showed that the substitution of R97 by methionine or lysine increased the E399 pKa by 0.6 or 0.8 units, respectively, shifting the pH optima of these mutants to 6.5. The substitution of Y331 by phenylalanine increased the pKa of E399 and E187 by 0.7 and 1.6 units, respectively, and displaced the pH optimum to 7.0. From the observed deltapKa it was calculated that R97 and Y331 contribute 3.4 and 4.0 kJ.mol(-1), respectively, to stabilization of the charged E399, thus enabling it to be the catalytic nucleophile. The substitution of E187 by D decreased the pKa of residue 187 by 0.5 units and shifted the pH optimum to 5.8, suggesting that an electrostatic repulsion between the deprotonated E399 and E187 may increase the pKa of E187, which then becomes the catalytic proton donor. In short the data showed that a network of noncovalent interactions among R97, Y331, E399 and E187 controls the Sfbetagly50 pH optimum. As those residues are conserved among the family 1 beta-glycosidases, it is proposed here that similar interactions modulate the pH optimum of all family 1 beta-glycosidases.  相似文献   

15.
Identification and evaluation of factors important for thermostability in proteins is a growing research field with many industrial applications. This study investigates the effects of introducing a novel disulfide bond and engineered electrostatic interactions with respect to the thermostability of holo azurin from Pseudomonas aeruginosa. Four mutants were selected on the basis of rational design and novel temperature-dependent atomic displacement factors from crystal data collected at elevated temperatures. The atomic displacement parameters describe the molecular movement at higher temperatures. The thermostability was evaluated by optical spectroscopy as well as by differential scanning calorimetry. Although azurin has a high inherent stability, the introduction of a novel disulfide bond connecting a flexible loop with small alpha-helix (D62C/K74C copper-containing mutant), increased the T(m) by 3.7 degrees C compared with the holo protein. Furthermore, three mutants were designed to introduce electrostatic interactions, K24R, D23E/K128R, and D23E/K128R/K24R. Mutant K24R stabilizes loops between two separate beta-strands and D23E/K128R was selected to stabilize the C-terminus of azurin. Furthermore, D23E/K128R/K24R was selected to reflect the combination of the electrostatic interactions in D23E/K128R and K24R. The mutants involving electrostatic interactions had a minor effect on the thermostability. The crystal structures of the copper-containing mutants D62C/K74C and K24R have been determined to 1.5 and 1.8 A resolution. In addition the crystal structure of the zinc-loaded mutant D62C/K74C has also been completed to 1.8 A resolution. These structures support the selected design and provide valuable information for evaluating effects of the modifications on the thermostability of holo azurin.  相似文献   

16.
A highly conserved lysine at position 128 of Escherichia coli glutamate dehydrogenase (GDH) has been altered by site-directed mutagenesis of the gdhA gene. Chemical modification studies have previously shown the importance of this residue for catalytic activity. We report the properties of mutants in which lysine-128 has been changed to histidine (K128H) or arginine (K128R). Both mutants have substantially reduced catalytic centre activities and raised pH optima for activity. K128H also has increased relative activity with amino acid substrates other than glutamate, especially L-norvaline. These differences, together with alterations in Km values, Kd values for NADPH and Ki values for D-glutamate, imply that lysine-128 is intimately involved in either direct or indirect interactions with all the substrates and also in catalysis. These multiple interactions of lysine-128 explain the diverse effects of chemical modifications of the corresponding lysine in homologous GHDs. In contrast, lysine-27, another highly reactive residue in bovine GDH, is not conserved in all of the sequenced NADP-specific GDHs and is therefore not likely to be involved in catalysis.  相似文献   

17.
Wild-type thymidylate synthase (WT-TS) from Escherichia coli and several of its mutants showed varying degrees of susceptibility to trypsin. While WT-TS was resistant to trypsin as were the mutants C146S, K48E, and R126K, others such as Y94A, Y94F, C146W, and R126E were digested but at different rates from one another. The peptides released from the mutants were identified by mass spectrometry and Edman sequence analysis. The known crystal structures for WT-TS, Y94F, and R126E, surprisingly, showed no structural differences that could explain the difference in their susceptibility to trypsin. One explanation is that the mutations could perturb the dynamic equilibrium of the dimeric state of the mutants as to increase their dissociation to monomers, which being less structured than the dimer, would be hydrolyzed more readily by trypsin. Earlier studies appear to support this proposal since conditions that promote subunit dissociation in solutions of R126E with other inactive mutants, such as dilution, low concentrations of urea, and elevated pH, greatly enhance the rate of restoration of TS activity. Analytic ultracentrifuge studies with various TSs in urea, or at pH 9.0, or that have been highly diluted are, for the most part, in agreement with this thesis, since these conditions are associated with an increase in dissociation to monomers, particularly with the mutant TSs. However, these studies do not rule out the possibility that conformation differences among the various TS dimers are responsible for the differences in susceptibility to trypsin, particularly at high concentrations of protein where the WT-TS and mutants are mainly dimers.  相似文献   

18.
甲壳素酶具有广泛的工业应用前景,如可将虾壳、蟹壳和其他甲壳废物降解成以几丁寡糖为主的高附加值产品,但野生型甲壳素酶催化效率低,大大限制了几丁寡糖的生产。笔者在前期研究中表达了一个具有较高效催化效率的甲壳素酶Chisb,并对其酶学性质进行了初步研究。为进一步提高甲壳素酶Chisb的催化效率,以R13NprB-C-SP-H为亲本,采用易错PCR(Error-pronePCR)技术构建随机突变体文库,对甲壳素酶Chisb进行定向进化。经过96孔板初筛和摇瓶复筛,获得了两个催化效率进一步提高的突变体C43D和E336R。对突变体的酶学性质进行分析, C43D和E336R的最适催化温度为55℃, C43D的最适pH为5.0,E336R的最适pH为9.0;其催化效率相比对照分别提高了1.35倍和1.57倍;而E336R和C43D催化产几丁寡糖的含量分别为2.53 g/L和2.06 g/L,相比对照(0.89 g/L)分别提高了2.84倍和2.31倍;底物转化率分别为84.3%和68.7%,相比对照(29.7%)分别提高了54.6%和39%。研究表明,通过易错PCR引入随机突变的方法能够有效提高甲壳素酶Chisb的催化效率。上述研究获得的催化效率提高的正向突变体及其酶学性质分析对生物转化合成几丁寡糖具有重要研究意义和应用价值。  相似文献   

19.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 &#77 Ser) and R166K (Arg 166 &#77 Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

20.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 →Ser) and R166K (Arg 166 →Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号