首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
视觉对于动物的生存和行为来说是非常重要的。虽然果蝇幼虫的视觉神经系统在组织结构上比成虫简单,但是也具有一定的复杂性和多样性。在最近几年中,随着对果蝇幼虫视觉系统功能的研究取得重要进展,我们对于果蝇幼虫视觉系统的认识更加丰富了。果蝇幼虫视觉系统的结构中,最初级的光感受神经元包括三类,一类是BO/BN(Bolwig's organ/Bolwig's nerve),一类是表达感光分子CRY(cryptochrome)的神经元,另外一类是Ⅳ型DA(classⅣdendriticarborization)神经元;果蝇幼虫视觉系统的次级神经元主要是光节律相关的侧神经元(lateralneurons,LN),它表达Per(period)、Tim(timeless)及Pdf(pigment dispersion factor)等节律相关的蛋白分子;而第三级神经元包括更为下游的、表达果蝇促胸腺激素且直接调控幼虫光偏好的NP394神经元。这三级神经元构成了我们现在所了解的果蝇幼虫视觉神经系统的基本框架。  相似文献   

2.
During the course of information processing, a visual system extracts characteristic information of the visual image and integrates the spatial and temporal visual information simultaneously. In this study, we investigate the integration effect of neurons in the primary visual cortex (V1 area) under the grating stimulation. First, an information integration model was established based on the receptive field properties of the extracted features of the visual images features, the interaction between neurons and the nonlinear integration of those neurons. Then the neuropsychological experiments were designed both to provide parameters for the model and to verify its effect. The experimental results with factual visual image were largely consistent with the model’s forecast output. This demonstrates that our model can truly reflect the integration effect of the primary visual system when being subjected to grating stimulations with different orientations. Our results indicate the primary visual system integrates the visual information in the following manner: it first extracts visual information through different types of receptive field, and then its neurons interact with each other in a non-linear manner, finally the neurons fire spikes recorded as responses to the visual stimulus.  相似文献   

3.
4.
Experimental results are given for the performance of a vernier task without visual input. Entropies obtained from the distribution of errors in performing this task are compared with entropies obtained from earlier experiments with visual input. The entropy difference gives the information in bits transmitted by the visual system. An information capacity for the visual system in performing the vernier task is deduced on the assumption that temporal summation of information is limited by the occurrence of an involuntary saccade.  相似文献   

5.
One of the more unusual visual systems of the Actinopterygii is that of Pantodon buchholzi (Osteoglossomorpha: Osteoglossidae). Its adaptations associate neuroanatomy at different levels of the visual system with ecological and behavioural correlates and demonstrate that the visual system of this fish has adapted for simultaneous vision in air and water. The visual field is divided into three distinct areas: for viewing into the water column, into air, and for viewing the aquatic reflection from the underside of the water surface. Cone diameters in different retinal areas correlate with the differing physical constraints in the respective visual field. Retinal differentiation between the aquatic and aerial views is paralleled at different levels of the central nervous system. A diencephalic nucleus receives both direct and indirect (tectal) afferent input from only the aerial visual system and a specific type of cell in the optic tectum is preferentially distributed in the tectum processing aerial inputs. Distinctions within a single sensory system suggest that some behaviours may be organized according to visual field. For Pantodon, feeding is initiated by stimuli seen by the ventral hemiretina so the anatomical specializations may well play an important role as elements in a feeding circuit.  相似文献   

6.
It is well known that the human postural control system responds to motion of the visual scene, but the implicit assumptions it makes about the visual environment and what quantities, if any, it estimates about the visual environment are unknown. This study compares the behavior of four models of the human postural control system to experimental data. Three include internal models that estimate the state of the visual environment, implicitly assuming its dynamics to be that of a linear stochastic process (respectively, a random walk, a general first-order process, and a general second-order process). In each case, all of the coefficients that describe the process are estimated by an adaptive scheme based on maximum likelihood. The fourth model does not estimate the state of the visual environment. It adjusts sensory weights to minimize the mean square of the control signal without making any specific assumptions about the dynamic properties of the environmental motion.We find that both having an internal model of the visual environment and its type make a significant difference in how the postural system responds to motion of the visual scene. Notably, the second-order process model outperforms the human postural system in its response to sinusoidal stimulation. Specifically, the second-order process model can correctly identify the frequency of the stimulus and completely compensate so that the motion of the visual scene has no effect on sway. In this case the postural control system extracts the same information from the visual modality as it does when the visual scene is stationary. The fourth model that does not simulate the motion of the visual environment is the only one that reproduces the experimentally observed result that, across different frequencies of sinusoidal stimulation, the gain with respect to the stimulus drops as the amplitude of the stimulus increases but the phase remains roughly constant. Our results suggest that the human postural control system does not estimate the state of the visual environment to respond to sinusoidal stimuli.  相似文献   

7.
The persistences of vision   总被引:2,自引:0,他引:2  
Human observers continue to experience a visual stimulus for some time after the offset that stimulus. The neural activity evoked by a visual stimulus continues for some time after its offset. The information extracted from a visual stimulus continues to be registered in a visual form of memory ('iconic memory') for some time after its offset. We may thus distinguish three distinct senses in which a visual stimulus may be said to persist after its physical offset: there is phenomenological persistence, neural persistence and informational persistence. Various assumptions have been made about the relation between these forms of visual persistence. The most frequent assumption is that they correspond simply to three different methods for studying a single entity. Detailed consideration of what is known about the properties of these three forms of persistence suggests, however, that this assumption is not correct. It can reasonably be proposed that visible persistence is the phenomenological correlate of neural persistence occurring at various stages of the visual system: photoreceptors, ganglion cells and the stereopsis system. Iconic memory on the other hand, does not correspond to visible persistence, nor to neural persistence in any stage of the visual system. Recent work, in fact, suggests that iconic memory is a property of some relatively late stage in the visual information-processing system, rather than being a peripheral sensory buffer store. This suggestion raises some fundamental theoretical issues concerning the psychology of visual perception, issues with which cognitive psychology has yet to come to grips.  相似文献   

8.
In this study, a tactile stimulator was developed, which can stimulate visual and auditory senses simultaneously by using the E-Prime software. This study tried to compensate for systematic stimulation control and other problems that occurred with previously developed tactile stimulators. The newly developed system consists of three units: a control unit, a drive unit and a vibrator. Since the developed system is a small, lightweight, simple structure with low electrical consumption, a maximum of 35 stimulation channels and various visual and auditory stimulation combinations without delay time, the previous systematic problem is corrected in this study. The system was designed to stimulate any part of the body including the fingers. Since the developed tactile stimulator used E-Prime software, which is widely used in the study of visual and auditory senses, the stimulator is expected to be highly practical due to a diverse combination of stimuli, such as tactile–visual, tactile–auditory, visual–auditory and tactile–visual–auditory stimulation.  相似文献   

9.
Electrophysiological measurements of the threshold spatial frequency were conducted in 26 healthy subjects by using visual evoked potentials with the purpose of objective determination of the visual acuity. For that we proposed a universal method of the visual stimulation and EEG processing (using ICA decomposition in particular) to minimize errors arising on account of individual differences in the visual system functioning. As a result, a correlation of 0.74 and a logarithmic dependence were obtained between spatial resolution measured by electrophysiological and psychophysical methods. The proposed methods of objective measurement of visual resolution has a high effectiveness, does not depend on specificity of individual EEG and domination of different channels in the visual system. Therefore it is possible to determinate objectively the visual acuity in humans independently of their responses.  相似文献   

10.
The distribution of excitability in retinal receptive fields may be well approximated by functions with recursive features. Physiological data do not exclude an implementation of recursive structures in the visual system. It is the most remarkable advantage of a recursive visual system, that cortical receptive fields tuned to different spatial frequencies will have an identical neuronal circuitry. Structural consequences for retina, LGN and visual cortex are discussed.  相似文献   

11.
最近的一些研究结果显示,视皮层内抑制性递质系统作用减弱可能是导致老年性视觉功能衰退的重要因素.是否皮层内兴奋性递质系统亦伴随衰老而发牛改变并影响皮层内神经兴奋与抑制的平衡尚不清楚.为此,利用Nissl染色和免疫组织化学染色方法以及Image-Pro Express图像分析软件对青、老年猫初级视皮层(17区)内各层神经元密度、兴奋性递质谷氨酸免疫反应阳性(Glu-immunoreactive,Glu-IR)神经元密度以及抑制性递质γ-氨基丁酸免疫反应阳性(γ-aminobutyric acid.immunoreactive,GABA-IR)神经元密度进行了统汁分析.结果显示,青、老年猫初级视皮层各层神经元密度均没有明显的年龄性差异(P>0.05);与青年猫相比,老年猫初级视皮层Glu-IR、GABA-IR神经元密度均显著减少(P<0.01),而Glu.IR/GABA.IR神经元密度比率去却显著增大(P<0.01).结果提示,老年猫初级视皮层内兴奋性递质系统作用相对增强,而抑制性递质系统的作用相对减弱,导致皮层内兴奋-抑制平衡关系失调,这可能是引起老年个体视觉功能衰退的重要原因之一.  相似文献   

12.
The ferret (Mustela putorius furo) is proving to be an excellent experimental animal for many anatomical and physiological studies of the adult and developing visual system. As a result, the amount of data available on the ferret's visual system is increasing at a rapid rate. The purposes of this paper are to briefly review some of those data and to present some of the reasons why the ferret is an appropriate choice as an experimental animal for visual system studies.  相似文献   

13.
Recording the evoked potentials and neuronal activity, electrophysiological studies have been made on tecto-thalamo-cortical tract in rats. The existence of a system of efferent projections in the superficial, visual layers of the superior colliculi was shown which are diffusely present in the nucleus lateralis posterior (n. LP), indicating low level of morpho-functional organization of this region of the dorsal thalamus in rats. In response to electrical stimulation of the n. LP, in laterocaudal parts of the visual system (fields 17 and 18a of the cortex) the evoked potentials of primary-negative polarity were observed which are associated mainly with the superficial (I--IV) cortical layers. Predominant representation of tecto-thalamo-cortical system in the laterocaudal visual area of the cortex indicates the tendency to separate representation (with respect to cortical areas and cortical layers) of retino-geniculate and retino-tecal visual systems in rats.  相似文献   

14.
A model of the saccadic system of salamanders on the basis of electrophysiological and anatomical results is presented. The model includes centers found to be significant for the guidance of saccades in these comparatively simple vertebrates. In particular, these are the optic tectum, the bulbar reticular formation and the motor system. The latter consists of two pairs of neck-muscles, an epaxial and a hypaxial one driven by their respective motoneurons. The model includes a visual, a sensori-motor, and a motor level. At the sensory level, the retinal coordinates are transferred to the optic tectum to establish an orthogonal map of visual angles. A secondary visual map of the ipsilateral eye with a pointsymmetrical organization exists in addition. The premotor system of the tectum was modelled according to an ensemble-coding principle. Thus, local activation of the visual map results in recruitment of an appropriate number of tectal premotor units. Simulation of the model reproduces correct metric properties of salamander saccades under varying stimulus presentations.  相似文献   

15.
Gebuis T  Reynvoet B 《PloS one》2012,7(5):e37426
Mainstream theory suggests that the approximate number system supports our non-symbolic number abilities (e.g. estimating or comparing different sets of items). It is argued that this system can extract number independently of the visual cues present in the stimulus (diameter, aggregate surface, etc.). However, in a recent report we argue that this might not be the case. We showed that participants combined information from different visual cues to derive their answers. While numerosity comparison requires a rough comparison of two sets of items (smaller versus larger), numerosity estimation requires a more precise mechanism. It could therefore be that numerosity estimation, in contrast to numerosity comparison, might rely on the approximate number system. To test this hypothesis, we conducted a numerosity estimation experiment. We controlled for the visual cues according to current standards: each single visual property was not informative about numerosity. Nevertheless, the results reveal that participants were influenced by the visual properties of the dot arrays. They gave a larger estimate when the dot arrays consisted of dots with, on average, a smaller diameter, aggregate surface or density but a larger convex hull. The reliance on visual cues to estimate numerosity suggests that the existence of an approximate number system that can extract numerosity independently of the visual cues is unlikely. Instead, we propose that humans estimate numerosity by weighing the different visual cues present in the stimuli.  相似文献   

16.
Individual and age-related characteristics of visual perception as a whole and its individual components were studied in seven-year-old children as related to their brain functional development. A dependence was found between the success of visual perception and the characteristics determining the functional maturity of both the cerebral cortex and the brain regulatory structures. Difficulties in noise resistance, visuospatial perception, and visual analysis/synthesis were greater in first-year school students with signs of immaturity of the bioelectrical activity of the cerebral cortex. Poor development of the visual perception system in schoolchildren was also determined by an underdeveloped frontothalamic regulatory system and deviations in the functional state of the nonspecific activation system.  相似文献   

17.
The information processing mechanism of the visual nervous system is an unresolved scientific problem that has long puzzled neuroscientists. The amount of visual information is significantly degraded when it reaches the V1 after entering the retina; nevertheless, this does not affect our visual perception of the outside world. Currently, the mechanisms of visual information degradation from retina to V1 are still unclear. For this purpose, the current study used the experimental data summarized by Marcus E. Raichle to investigate the neural mechanisms underlying the degradation of the large amount of data from topological mapping from retina to V1, drawing on the photoreceptor model first. The obtained results showed that the image edge features of visual information were extracted by the convolution algorithm with respect to the function of synaptic plasticity when visual signals were hierarchically processed from low-level to high-level. The visual processing was characterized by the visual information degradation, and this compensatory mechanism embodied the principles of energy minimization and transmission efficiency maximization of brain activity, which matched the experimental data summarized by Marcus E. Raichle. Our results further the understanding of the information processing mechanism of the visual nervous system.  相似文献   

18.
本文利用计算机设计新的心理物理实验,研究人类视觉系统的颜色、形状通道和对颜色的识别反应,证实视觉系统的颜色通道和形状通道是独立并行的.对颜色反应还进行视觉诱发电位测试,结果与心理物理实验基本一致.最后,提出颜色通道与形状通道间信息相互统一的假说模型.  相似文献   

19.
A partial answer to the question of the precocious development of the temporal lobe in fossil lemurs is offered by the presentation of evidence that in the tree shrew, in prosimians, and probably in all primates the temporal lobe contains primary visual cortex. The visual pathway to the temporal lobe is achieved by relays through the superficial layers of the superior colliculus and pulvinar nucleus. This pathway parallels the geniculo-striate system. Still a third visual system can be identified with sensory-motor connections in the deeper layers of the superior colliculus.  相似文献   

20.
We summarize characteristic sequences of morphological change in the teleost visual system from larvae to large adults at the level of the retina, the optic tract and the optic tectum. These shifts include sizes and ratios of cone and rod receptor cells, sizes and types of retinal ganglion cells and optic tract fibers as well as features of the optic tectum. Teleost larvae are the smallest vertebrates known. We suggest that the utilization of color contrasts as an adaptive benefit dictates the starting point of morophological development, which is a pure cone retina in most fish larvae. The direction of morphological and functional shifts in the teleost visual system during growth is determined by continuous retinal stretch, which allows for improving visual abilities. The larval visual system probably provides just adequate photopic (cone-)acuity for plankton feeding, but limited space in the retina hampers optimization of both, photopic resolving power and sensitivity Limited space also Irevents the simultaneous development of the scotopic (rod-)system. Over a wide range of body sizes, morphological parameters change, photopic and scotopic resolving power, acuity and sensitivity improve. Size constraints in the teleost visual system and lifefong shifts in sensory capacities are discussed with respect to ecology and the niche concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号