首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mycorrhiza samples of neighbouring Quercus ilex and Erica arborea plants collected in a postcutting habitat were processed to see whether plants differing in mycorrhizal status harbour the same root endophytes. Three experiments were performed in parallel: (i) isolation, identification and molecular characterization of fungi from surface-sterilized roots of both plant species; (ii) re-inoculation of fungal isolates on axenic E. arborea and Q. ilex seedlings; (iii) direct inoculation of field-collected Q. ilex ectomycorrhizas onto E. arborea seedlings. About 70 and 150 fungal isolates were obtained from roots of Q. ilex and E. arborea, respectively. Among them, Oidiodendron species and five cultural morphotypes of sterile isolates formed typical ericoid mycorrhizas on E. arborea in vitro. Fungi with such mycorrhizal ability were derived from both host plants. Isolates belonging to one of these morphotypes (sd9) also exhibited an unusual pattern of colonization, with an additional extracellular hyphal net. Ericoid mycorrhizas were also readily obtained by direct inoculation of E. arborea seedlings with Q. ilex ectomycorrhizal tips. Polymerase chain-restriction fragment length polymorphism and random amplified polymorphic DNA analyses of the shared sterile morphotypes demonstrate, in the case of sd9, the occurrence of the same genet on the two host plants. These results indicate that ericoid mycorrhizal fungi associate with ectomycorrhizal roots, and the ecological significance of this finding is discussed.  相似文献   

2.
Ericoid mycorrhizal fungi: some new perspectives on old acquaintances   总被引:11,自引:0,他引:11  
Perotto  Silvia  Girlanda  Mariangela  Martino  Elena 《Plant and Soil》2002,244(1-2):41-53
Many ericaceous species colonize as pioneer plants substrates ranging from arid sandy soils to moist mor humus, in association with their mycorrhizal fungi. Thanks to the symbiosis with ericoid mycorrhizal fungi, ericaceous plants are also able to grow in highly polluted environments, where metal ions can reach toxic levels in the soil substrate. For a long time this mycorrhizal type has been regarded as an example of a highly specific interaction between plants and fungi. More recent studies have been challenging this view because some ericoid mycorrhizal endophytes seem also able to colonise plants from very distant taxa. A molecular approach has allowed the investigation of genetic diversity and molecular ecology of ericoid mycorrhizal fungi, and has revealed that ericaceous plants can be very promiscuous, with multiple occupancy of their thin roots. The molecular analysis of sterile morphotypes involved in this symbiosis has also led to deeper understanding of the species diversity of ericoid fungi. Genetic polymorphism of ericoid fungi is wider than previously thought, and often increased by the presence of Group I introns in the nuclear small subunit rDNA.  相似文献   

3.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

4.
Positive plant–plant interaction is a widespread phenomenon, especially in harsh environments, which can contribute to secondary successions. Here, we investigated whether Arbutus unedo positively influences Quercus ilex establishment in shrub communities by abiotic and/or biotic interactions in a Mediterranean forest ecosystem, where we previously showed that A. unedo and Q. ilex share numerous species of mycorrhizal fungi. In a first field experiment, patterns of Q. ilex survivorship were documented. During the summer following germination, a majority of seedlings survived in A. unedo chaparral (AU), whereas most of them died in previous succession stages dominated by Erica arborea (EA). These results showed that survival of the Q. ilex seedling is succession stage dependent, probably due to the differential effects of the summer drought. In a second experiment, Q. ilex seedlings were used as bait plants to investigate the mycorrhizal inoculum in EA and AU. Morphotyping and molecular typing revealed 2.5 times higher colonization in AU than in EA, with more diverse fungi. Our results demonstrate that A. unedo facilitates mycorrhization of Q. ilex by hosting compatible ectomycorrhizal symbionts and positively influences seedling survival by buffering abiotic conditions. A comprehensive understanding of facilitation should thus include investigations of the soil biological patterns.  相似文献   

5.
Responses of the mycorrhizal fungal community in terrestrial ecosystems to global change factors are not well understood. However, virtually all land plants form symbiotic associations with mycorrhizal fungi, with approximately 20% of the plants' net primary production transported down to the fungal symbionts. In this study, we investigated how ericoid mycorrhiza (ErM), fine endophytes (FE) and dark septate endophytes (DSE) in roots responded to elevated atmospheric CO2 concentrations and warming in the dwarf shrub understory of a birch forest in the subarctic region of northern Sweden. To place the belowground results into an ecosystem context we also investigated how plant cover and nutrient concentrations in leaves responded to elevated atmospheric CO2 concentrations and warming. The ErM colonization in ericaceous dwarf shrubs increased under elevated atmospheric CO2 concentrations, but did not respond to warming following 6 years of treatment. This suggests that the higher ErM colonization under elevated CO2 might be due to increased transport of carbon belowground to acquire limiting resources such as N, which was diluted in leaves of ericaceous plants under enhanced CO2. The elevated CO2 did not affect total plant cover but the plant cover was increased under warming, which might be due to increased N availability in soil. FE colonization in grass roots decreased under enhanced CO2 and under warming, which might be due to increased root growth, to which the FE fungi could not keep up, resulting in proportionally lower colonization. However, no responses in aboveground cover of Deschampsia flexuosa were seen. DSE hyphal colonization in grass roots significantly increased under warmer conditions, but did not respond to elevated CO2. This complex set of responses by mycorrhizal and other root‐associated fungi to global change factors of all the fungal types studied could have broad implications for plant community structure and biogeochemistry of subarctic ecosystems.  相似文献   

6.
The Structure and Function of the Ericoid Mycorrhizal Root   总被引:15,自引:1,他引:14  
READ  D.J. 《Annals of botany》1996,77(4):365-374
The uniformity of structure of the anatomically simple ericoidmycorrhizal hair root across many plant families, includingEpacridaceae, that are diagnostic of heathland, and the characteristicrestriction of its occurrence to nutrient impoverished soils,are both emphasized. The extent to which the predominantly ascomycetousfungal endophytes of these roots are taxonomically related isdiscussed. In functional terms, the role of the mycorrhiza innutrient mobilization is evaluated on the basis of experimentswith ericaceous plants. The considerable saprotrophic potentialof endophytes such asHymenoscyphus ericae is demonstrated andthe significance of this for nitrogen (N) and phosphorus (P)nutrition of plants growing in sclerophyllous litter of highC:N and C:P ratios is discussed. The need to carry out experimentsusing epacrid hosts is stressed. It is considered that the selectiveprovision, by ericoid mycorrhizal fungi, of access to recalcitrantorganic sources of N and P facilitates niche differentiationand so contributes to the maintenance of species diversity whichis a feature of heaths with a significant component of epacridor ericaceous plants particularly in the southern hemisphere. Ericoid mycorrhiza; hair root; nitrogen mobilization; heathland; Epacridaceae  相似文献   

7.
Simultaneous associations among ectotrophic and ericoid mycorrhizal hosts and their mycorrhizal fungi are expected in boreal bogs where ericaceous shrubs and conifers coexist rooted in an organic matrix dominated by Sphagnum mosses. We were thus prompted to examine, in vitro, the abilities of three ericoid mycorrhizal fungi [ Hymenoscyphus ericae, Oidiodendron maius, and Variable White Taxon (VWT)] to associate with Picea mariana (Pinaceae), with both P. mariana and Rhododendron groenlandicum (Ericaceae) simultaneously, and to decompose Sphagnum fuscum. Hymenoscyphus ericae and VWT developed an intracellular association with roots of P. mariana and with roots of R. groenlandicum. Two strains of O. maius did not form typical infection units in R. groenlandicum, nor did they colonize the root cells of P. mariana. Mass losses incurred by sterilized S. fuscum plants inoculated with these three taxa indicated that O. maius could be more efficient as a free-living saprophyte on this material than either H. ericae or VWT and may in part explain why atypical associations with the roots of ericaceous hosts were formed.  相似文献   

8.
A diverse range of fungi associate with ectomycorrhizal (EcM) root tips, however, their identity and the biotic and abiotic filters structuring these communities remain unknown. We employed a metabarcoding approach to characterize fungal communities associating with the EcM root tips of Quercus rubra along a natural soil nitrogen gradient. EcM communities and ectomycorrhizal associated fungi (EcAF) were tightly linked across the breadth of the soil gradient. Notably, EcAF communities were primarily shaped by the morphological attributes of EcM communities, particularly the relative abundance of EcM taxa forming rhizomorphic hyphae. Edaphic properties (soil C:N and net N mineralization) exerted minimal influence, suggesting a strong role of biotic interactions in EcAF community assembly. The presence of plants forming ericoid mycorrhizal associations also shapes the prevalence of ericoid mycorrhizal fungi associating with EcM root tips. Overall, EcAF communities were dominated by helotialean fungi, ericoid mycorrhizal fungi, dark septate endophytes, and the white-rot fungi Mycena.  相似文献   

9.
Tian W  Zhang CQ  Qiao P  Milne R 《Mycologia》2011,103(4):703-709
The diversity of ericoid mycorrhizal fungi isolated from Rhododendron decorum Franch. in Yunnan, southwestern China, was examined for the first time. In total 300 hair-root samples were collected from 13 R. decorum individuals in two adjacent wild population sites and one cultivated population site. Two hundred eighteen slow-growing isolates were obtained; the ability of some to form ericoid mycorrhiza was tested in vitro. One hundred twenty-five isolates formed hyphal structures morphologically corresponding to ericoid mycorrhiza, and these were determined by morphological and molecular means to belong to 12 fungal species. There were hardly any differences in species among the three sampled populations. The sequences of several isolates were similar to those of Oidiodendron maius and ericoid mycorrhizal fungi from Helotiales, accounting respectively for 18.4% and 24.8% of the total culturable ericoid mycorrhizal fungi assemblage. Dark septate endophytes were detected in the sampled hair roots by microscopy.  相似文献   

10.
锦绣杜鹃菌根真菌rDNA ITS序列分析及接种效应研究   总被引:1,自引:0,他引:1  
利用rDNA ITS序列对锦绣杜鹃菌根真菌的16个菌株进行了分类分析。根据菌株ITS序列全长计算各菌株间序列相似度和遗传距离,并与GenBank中最相似菌株序列构建系统发育树。结果表明:16个菌株在系统树上聚为3个大分支。其中7个菌株在支持率为100%的基础上与树粉孢属真菌Oidiodendron sp.聚为一类;2个菌株与未鉴定的杜鹃花科植物根系真菌unidentified root associated fungi聚为一类,支持率为100%;其他7个菌株在98%的支持率上与几种未命名的欧石楠类菌根真菌  相似文献   

11.
Molecular diversity of fungi from ericoid mycorrhizal roots   总被引:6,自引:0,他引:6  
In order to investigate the diversity of fungal endophytes in ericoid mycorrhizal roots, about 150 mycelia were isolated from surface-sterilized roots of 10 plants of Calluna vulgaris. Each mycelium was reinoculated to C. vulgaris seedlings under axenic conditions, and the phenotype of the plant-fungus association assessed by light and electron microscopy. Many isolates that were able in vitro to produce typical ericoid mycorrhizae did not form reproductive structures under our culture conditions, whereas others could be identified as belonging to the species Oidiodendron maius. Morphological and molecular analysis of the fungal isolates showed that the root system of a single plant of C. vulgaris is a complex mosaic of several populations of mycorrhizal and non mycorrhizal fungi. PCR-RFLP techniques, used to investigate the mycorrhizal endophytes, revealed up to four groups of fungi with different PCR-RFLP patterns of the ITS ribosomal region from a single plant. Some of the mycorrhizal fungi sharing the same PCR-RFLP pattern showed high degree of genetic polymorphism when analysed with the more sensitive RAPD technique; this technique may prove a useful tool to trace the spread of individual mycorrhizal mycelia, as it has allowed us to identify isolates with identical RAPD fingerprints on different plants.  相似文献   

12.
Methods used in the restoration of lowland heath vary depending on edaphic factors at a site and need for introduction of ericaceous propagules. This study investigates the effect of some methods on growth of an important ericaceous species, Heather (Calluna vulgaris). It also explores whether success of growth of C. vulgaris in restoration schemes is affected by its degree of colonization by ericoid mycorrhizal fungi (ERM). The success of Heather growth was compared at three sites, a control area of natural heathland and two restoration sites. These were a quarry where soil had been translocated but not chemically manipulated and a site on agricultural land where the top soil had been improved but then either stripped away or acidified prior to attempting heathland restoration. Propagules of C. vulgaris were applied either as turves or as clippings. Results show that clippings produced as dense a cover of C. vulgaris as turves over a period of 13 years and that plants in such swards can exhibit a degree of ERM colonization comparable to that found in mature plants growing in natural heathland. Young (<2 years of age) plants of C. vulgaris had less extensive mycorrhizal colonization of their roots, particularly when growing on restored agricultural soils. A relationship was found between lower levels of mycorrhizal colonization and smaller aboveground plant growth. Success of heathland restoration may be improved by finding means to enhance the rate and extent of mycorrhizal colonization of young C. vulgaris growing in a restoration environment.  相似文献   

13.
In the 'F' horizons of acid mor-humus soils of heathland ecosystems, mycorrhizal roots of the dominant ericaceous species form a large fraction of the soil biomass. Rapid turnover of these roots provides the potential for recycling of substantial amounts of nitrogen contained in their fungal and plant components. Here, we first determine the amount of N in the biomass of ericoid roots growing in heathland and show it to constitute a large proportion of total soil N. In order to assess the accessibility of this N to ericaceous plants, experiments were then conducted using aseptically produced shoot and root necromass of Vaccinium macrocarpon Ait., the roots being grown with or without mycorrhizal colonization. These materials were provided as sole nitrogenous substrates in growth experiments using the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf & Kernan in pure culture and V. macrocarpon in the mycorrhizal (M) or non-mycorrhizal (NM) condition as test organisms. The experiments were designed to test the hypothesis that the N contained in these substrates can be mobilized by the mycorrhizal endophyte. The ability of the endophyte to utilize the substrates was determined by measuring fungal yields and by assessing the presence of its extra-cellular protease and chitinase enzymes. Transfer of N to the host by the endophyte was determined through measurements of plant yield and tissue N contents. H. ericae produced a significantly greater yield on shoot and mycorrhizal root necromass than on non-mycorrhizal root necromass. The extra-cellular enzymes protease and chitinase were produced by the fungus when grown on the M root necromass. The fungus also transferred N to the host plant, up to 76% of N contained in the substrate being found in M plants whereas less than 5% was present in their NM counterparts.  相似文献   

14.
 The ability of four ericoid mycorrhizal endophytes isolated from roots of Woollsia pungens (Cav.) F. Muell. (Epacridaceae) to utilise organic forms of nitrogen and phosphorus during growth in axenic culture was assessed. All isolates were able to utilise glutamine, arginine and bovine serum albumin (BSA), along with NH4 + or NO3 , in most cases yielding at least as much biomass as the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan. All isolated endophytes were able to utilise BSA, arginine and glutamine as sole sources of N and C. With the exception of a single isolate (C40), which showed little growth on glutamine, biomass yields on glutamine as the sole N and C source was significantly greater for all isolates than on either of the other two organic N sources. Two isolates from W. pungens (C40 and A43) utilised DNA and sodium inositol hexaphosphate as sole P sources, in each case yielding significantly more biomass than H. ericae. The results suggest that mycorrhizal endophytes from epacrid plant hosts and those from ericaceous hosts have similar abilities to utilise organic forms of N and P. Accepted: 4 September 1998  相似文献   

15.
Most of the temperate conifers associate with ectomycorrhizal fungi, but their roots also harbour a wide range of endophytes. We focused on ascomycetes associating with basidiomycetous ectomycorrhizas of Norway spruce in a temperate montane forest in central Europe and found that the majority of the co-associated fungi belonged to the Rhizoscyphus ericae aggregate (REA), being dominated by Meliniomyces variabilis. We further tested the ability of representative isolates to colonize spruce root tips and European blueberry (Vaccinium myrtillus) hair roots in an agar system as well as their effect on blueberry growth in a peat-agar system. M. variabilis intracellularly colonized spruce (Picea abies) root tip cortex, formed ericoid mycorrhizas in blueberry and enhanced blueberry shoot and root growth in comparison with non-inoculated plants. Our findings suggest that spruce ectomycorrhizas may represent selective niches for ericoid mycorrhizal fungi in habitats lacking suitable ericaceous hosts.  相似文献   

16.
Ericoid mycorrhiza occur only within the plant family Ericaceae, yet are globally widespread and contribute to carbon and nutrient cycling in many habitats where harsh conditions limit decomposition and plant nutrient uptake. An increasingly diverse range of fungi are recognized as ericoid symbionts and patterns in the distribution of ericoid taxa are beginning to emerge across scales. However, the true diversity of ericoid mycorrhizal fungi remains unresolved due to limited sampling from some regions and challenges associated with delineating mycorrhizal taxa from the broader fungal community associated with ericoid plants. Interpreting patterns in the diversity and distributions of ericoid mycorrhizal fungi will ultimately require improved understanding of their functional ecology and functional diversity, which is currently limited to a few well studied species. Fortunately, many ericoid taxa are amenable to experimental manipulation and continued ericoid mycorrhizal research promises to improve general understanding of the ecology and evolution of mycorrhizal symbioses.  相似文献   

17.
张艳华  孙立夫 《菌物学报》2021,40(6):1299-1316
杜鹃花科Ericaceae植物可与土壤真菌形成杜鹃花类菌根ericoid mycorrhizas (ERM)共生体,且广泛分布于全球不同的陆地生态系统,特别是在贫瘠、酸性等严酷的环境中占优势.杜鹃花科植物菌根类型多样,绝大多数宿主具有ERM,还有少量宿主具有其他类型的菌根结构,且常与暗隔内生菌(dark septate...  相似文献   

18.
Ericoid mycorrhizal fungal endophytes form mycorrhizal associations with Ericaceae plant taxa and are regarded as essential to the ecological fitness of the plants in extremely nutrient-poor soils worldwide. We isolated fungi from roots of Epacris pulchella (Ericaceae) in a south-eastern Australian sclerophyll forest and compared rDNA internal transcribed spacer (ITS) restriction fragment length polymorphisms (RFLPs) and sequences for the cultured isolate assemblage with fungi identified in DNA extracted directly from the same root systems by cloning or denaturing gradient gel electrophoresis (DGGE). The most abundant RFLP types in the cultured isolate assemblage were identified as putative ericoid mycorrhizal ascomycete endophytes, and these also represented the most abundant RFLP types in the cloned assemblage and the most intense bands in DGGE profiles. Each method identified unique taxa, notably putative basidiomycetes in the DNA extracted directly from E. pulchella roots. However, the relative abundance of these was low.  相似文献   

19.
The Alaskan tussock tundra is a strongly nutrient-limited ecosystem, where almost all vascular plant species are mycorrhizal. We established a long-term removal experiment to document effects of arctic plant species on ecto- and ericoid mycorrhizal fungi and to investigate whether species interactions and/or nutrient availability affect mycorrhizal colonization. The treatments applied were removal of Betula nana (Betulaceae, dominant deciduous shrub species), removal of Ledum palustre (Ericaceae, dominant evergreen shrub species), control (no removal), and each of these three treatments with the addition of fertilizer. After 3 years of Ledum removal and fertilization, we found that overall ectomycorrhizal colonization in Betula was significantly reduced. Changes in ectomycorrhizal morphotype composition in removal and fertilized treatments were also observed. These results suggest that the effect of Ledum on Betula 's mycorrhizal roots is due to sequestration of nutrients by Ledum, leading to reduced nutrient availability in the soil. In contrast, ericoid mycorrhizal colonization was not affected by fertilization, but the removal of Betula and to a lower degree of Ledum resulted in a reduction of ericoid mycorrhizal colonization suggesting a direct effect of these species on ericoid mycorrhizal colonization. Nutrient availability was only higher in fertilized treatments, but caution should be taken with the interpretation of these data as soil microbes may effectively compete with the ion exchange resins for the nutrients released by plant removal in these nutrient-limited soils.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号