首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
PURPOSE: Cisplatin was found to radiosensitize SW-1573 cells by inhibition of PLDR. Therefore, it was investigated whether cisplatin combined with gamma-radiation leads to an increase in the number of chromosomal aberrations or apoptotic cells compared with radiation alone. METHODS: Confluent cultures of the human lung carcinoma cell line SW-1573 were treated with 1 microM cisplatin for 1 h, 4 Gy gamma-radiation, or a combination of both. Cell survival was studied by the clonogenic assay. Aberrations were analysed by FISH in prematurely condensed chromosomes (PCC) and the induction of apoptosis by counting fragmented nuclei. RESULTS: A radiosensitizing effect of cisplatin on cell survival was observed if time for PLDR was allowed. An increased number of chromosomal fragments were observed immediately after irradiation compared with 24 h after irradiation whereas color junctions are only formed 24 h after irradiation. No increase in chromosomal aberrations was found after combined treatment, but a significantly enhanced number of fragmented nuclei were observed when confluent cultures were replated after allowing PLDR. CONCLUSION: The inhibition of PLDR by cisplatin in delayed plated SW-1573 cells did not increase chromosomal aberrations, but increased the induction of apoptosis.  相似文献   

2.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

3.
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.  相似文献   

4.
The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities.Key words: Obatoclax, TRAIL, YY1, DR5, lymphoma, immunosensitization  相似文献   

5.
While melanoma cell lines use aerobic glycolysis, addition of a competitive inhibitor such as 2-deoxyglucose (2DG) by itself achieved only modest killing. To overcome high levels of pro-survival proteins in melanoma cells, 2DG or glucose deprivation (GD) was combined with tumor necrosis factor-related apoptosis inducing-ligand (TRAIL). TRAIL treatment by itself also only induced modest killing, but combining TRAIL with 2DG or GD triggered a synergistic pro-apoptotic response in melanoma lines but not melanocytes. In melanoma cells, there was cleavage of caspases 3, 8 and Bid. Killing by combination treatments was completely blocked by a pan-caspase inhibitor, z-VAD. Mechanistically, 2DG and GD enhanced surface levels for both death receptors (DR4 and DR5); which was accompanied by reductions in levels of Mcl-1, Bcl-2 and survivin. Mannose pre-treatment reduced enhanced killing by combination treatments, accompanied by reduced DR5 levels. These results indicate melanoma cells in which there is altered glucose-related metabolomics can be exploited by interfering with glucose metabolism in combination with TRAIL; thereby overcoming the notorious death resistance of melanoma. Thus, a new therapeutic window is open for future clinical trials using agents targeting the glucose-related metabolome, in combination with agents triggering death receptors in patients with melanoma.  相似文献   

6.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53?/?) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

7.
8.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53−/−) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

9.
The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with Obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces programmed cell death through the caspase activation cascade and translocation of cleaved Bid (tBid) by the apical caspase-8 to mitochondria to induce oligomerization of multidomain Bax and Bak. However, the roles of prosurvival Bcl-2 family proteins in TRAIL apoptosis remain elusive. Here we showed that, besides the specific cleavage and activation of Bid by caspase-8 and caspase-3, TRAIL-induced apoptosis in Jurkat T cells required the specific cleavage of Mcl-1 at Asp-127 and Asp-157 by caspase-3, while other prototypic antiapoptotic factors such as Bcl-2 or Bcl-X(L) seemed not to be affected. Mutation at Asp-127 and Asp-157 of Mcl-1 led to cellular resistance to TRAIL-induced apoptosis. In sharp contrast to cycloheximide-induced Mcl-1 dilapidation, TRAIL did not activate proteasomal degradation of Mcl-1 in Jurkat cells. We further established for the first time that the C-terminal domain of Mcl-1 became proapoptotic as a result of caspase-3 cleavage, and its physical interaction and cooperation with tBid, Bak, and voltage-dependent anion-selective channel 1 promoted mitochondrial apoptosis. These results suggested that removal of N-terminal domains of Bid by caspase-8 and Mcl-1 by caspase-3 enabled the maximal mitochondrial perturbation that potentiated TRAIL-induced apoptosis.  相似文献   

11.
Ionizing radiation and mitotic inhibitors are used for the treatment of lymphoma. We have studied cell cycle arrest and apoptosis of three human B-lymphocyte cell lines after X irradiation and/or nocodazole treatment. Radiation (4 and 6 Gy) caused arrest in the G(2) phase of the cell cycle as well as in G(1) in Reh cells with an intact TP53 response. Reh cells, but not U698 and Daudi cells with defects in the TP53 pathway, died by apoptosis after exposure to 4 or 6 Gy radiation (>15% apoptotic Reh cells and <5% apoptotic U698/Daudi cells 24 h postirradiation). Lower doses of radiation (0.5 and 1 Gy) caused a transient delay in the G(2) phase of the cell cycle for the three cell lines but did not induce apoptosis (<5% apoptotic cells at 24 h postirradiation). Cells of all three cell lines died by apoptosis after exposure to 1 microg/ml nocodazole, a mitotic blocker that acts by inhibiting the polymerization of tubulin (>25% apoptotic cells after 24 h). When X irradiation with 4 or 6 Gy was performed at the time of addition of nocodazole to U698 and Daudi cells, X rays protected against the apoptosis-inducing effects of the microtubule inhibitor (<5% and 15% apoptotic cells, respectively, 24 h incubation). U698 and Daudi cells apparently have some error(s) in the signaling pathway inducing apoptosis after irradiation, and our results suggest that the arrest in G(2) prevents the cells from entering mitosis and from apoptosis in the presence of microtubule inhibitors. This arrest was overcome by caffeine, which caused U698 cells to enter mitosis (after irradiation) and become apoptotic in the presence of nocodazole (26% apoptotic cells, 24 h incubation). These results may have implications for the design of clinical multimodality protocols involving ionizing radiation for the treatment of cancer.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

13.
14.
Exposure of unirradiated human keratinocytes to irradiated cell conditioned medium (ICCM) is known to cause a cascade of events that leads to reproductive death and apoptosis. This study investigates the effect of ICCM on clonogenic survival, mitochondrial mass and BCL2 expression in unirradiated keratinocytes. Exposure to 5 mGy, 0.5 Gy and 5 Gy ICCM resulted in a significant decrease in clonogenic survival. Human keratinocytes incubated with ICCM containing an antioxidant, N-acetylcysteine, showed no significant decrease in clonogenic survival. HPV-G cells incubated with ICCM containing a caspase 9 inhibitor showed no significant decrease in clonogenic survival when the ICCM dose was < or =0.5 Gy. A significant increase in mitochondrial mass per cell was observed after exposure to 5 mGy and 0.5 Gy ICCM. A change in the distribution of the mitochondria from a diffuse cytoplasmic distribution to a more densely concentrated perinuclear distribution was also observed at these doses. No significant increase in mitochondrial mass or change in distribution of the mitochondria was found for 5 Gy ICCM. Low BCL2 expression was observed in HPV-G cells exposed to 5 mGy or 0.5 Gy ICCM, whereas a large significant increase in BCL2 expression was observed in cells exposed to 5 Gy ICCM. This study has shown that low-dose irradiation can cause cells to produce medium-borne signals that can cause mitochondrial changes and the induction of BCL2 expression in unirradiated HPV-G cells. The dose dependence of the mitochondrial changes and BCL2 expression suggests that the mechanisms may be aimed at control of response to radiation at the population level through signaling pathways.  相似文献   

15.
16.
17.

Background

The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases.

Methodology/Principal Findings

To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations.

Conclusions/Significance

Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling.  相似文献   

18.
The TNF-related apoptosis inducing ligand (TRAIL) has promising anti-cancer therapeutic activity, although significant percentage of primary tumors resistant to TRAIL-induced apoptosis remains an obstacle to the extensive use of TRAIL-based mono-therapies. Natural compound curcumin could potentially sensitize resistant cancer cells to TRAIL. We found that the combination of TRAIL with curcumin can synergistically induces apoptosis in three TRAIL-resistant breast cancer cell lines. The mechanism behind this synergistic cell death was investigated by examining an effect of curcumin on the expression and activation of TRAIL-associated cell death proteins. Immunoblotting, RNA interference, and use of chemical inhibitors of TRAIL-activate signaling revealed differential effects of curcumin on the expression of Mcl-1 and activities of ERK and Akt. Curcumin-induced production of reactive oxygen species did not affect total expression of DR5 but it enhanced mobilization of DR5 to the plasma membrane. In these breast cancer cells curcumin also induced downregulation of IAP proteins. Taken together, our data suggest that a combination of TRAIL and curcumin is a potentially promising treatment for breast cancer, although the specific mechanisms involved in this sensitization could differ even among breast cancer cells of different origins.  相似文献   

19.
The proteasome inhibitors are a new class of antitumor agents. These inhibitors cause the accumulation of many proteins in the cell with the induction of apoptosis including TRAIL death receptors DR4 and DR5, but the role of the TRAIL apoptotic pathway in proteasome inhibitor cytotoxicity is unknown. Herein, we have demonstrated that the induction of apoptosis by the proteasome inhibitors, MG-132 and PS-341 (bortezomib, Velcade), in primary CLL cells and the Burkitt lymphoma cell line, BJAB, is associated with up-regulation of TRAIL and its death receptors, DR4 and DR5. In addition, FLICE-like inhibitory protein (c-FLIP) protein is decreased. MG-132 treatment increases binding of DR5 to the adaptor protein FADD, and causes caspase-8 activation and cleavage of pro-apoptotic BID. Moreover, DR4:Fc or blockage of DR4 and DR5 expression using RNA interference, which prevents TRAIL apoptotic signaling, blocks proteasome inhibitor induced apoptosis. MG-132 also increases apoptosis and DR5 expression in normal B-cells. However, when the proteasome inhibitors are combined with TRAIL or TRAIL receptor activating antibodies the amount of apoptosis is increased in CLL cells but not in normal B cells. Thus, activation of the TRAIL apoptotic pathway contributes to proteasome inhibitor induced apoptosis in CLL cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号