共查询到20条相似文献,搜索用时 0 毫秒
1.
Xian M Fujiwara N Wen Z Cai T Kazuma S Janczuk AJ Tang X Telyatnikov VV Zhang Y Chen X Miyamoto Y Taniguchi N Wang PG 《Bioorganic & medicinal chemistry》2002,10(9):3049-3055
Enzymatic generation of nitric oxide (NO) by nitric oxide synthase (NOS) consists of two oxidation steps. The first step converts L-arginine to N(G)-hydroxy-L-arginine (NOHA), a key intermediate, and the second step converts NOHA to NO and L-citrulline. To fully probe the substrate specificity of the second enzymatic step, an extensive structural screening was carried out using a series of N-alkyl (and N-aryl) substituted-N'-hydroxyguanidines (1-14). Among the eleven N-alkyl-N'-hydroxyguanidines evaluated, N-n-propyl (2), N-iso-propyl (3), N-n-butyl (4), N-s-butyl (5), N-iso-butyl (6), N-pentyl (8) and N-iso-pentyl (9) derivatives were efficiently oxidized by the three isoenzymes of NOS (nNOS, iNOS and eNOS) to generate NO. N-Butyl-N'-hydroxyguanidine (4) was the best substrate for iNOS (K(m)=33 microM) and N-iso-propyl-N'-hydroxyguanidine (3) was the best substrate for nNOS (K(m)=56 microM). When the alkyl substituents were too small (such as ethyl 1) or too large (such as hexyl 10 and cyclohexyl 11), the activity decreased significantly. This suggests that the van der Waals interaction between the alkyl group and the hydrophobic cavity in the NOS active site contributes significantly to the relative reactivity of compounds 3-11. Moreover, five N-aryl-N'-hydroxyguanidines were found to be good substrates for iNOS, but not substrates for eNOS and nNOS. N-phenyl-N'-hydroxyguanidine was the best substrate among them (K(m)=243 microM). This work demonstrates that N-alkyl substituted hydroxyguanidine compounds are novel NOS substrates which 'short-circuit' the first oxidation step of NOS, and N-aryl substituted hydroxyguanidine compounds are isoform selective NOS substrate. 相似文献
2.
Nitric oxide (NO) and NO synthases (NOSs) are crucial factors in many pathophysiological processes such as inflammation, vascular/neurological function, and many types of cancer. Noninvasive imaging of NO or NOS can provide new insights in understanding these diseases and facilitate the development of novel therapeutic strategies. In this review, we will summarize the current state-of-the-art multimodality imaging in detecting NO and NOSs, including optical (fluorescence, chemiluminescence, and bioluminescence), electron paramagnetic resonance (EPR), magnetic resonance (MR), and positron emission tomography (PET). With continued effort over the last several years, these noninvasive imaging techniques can now reveal the biodistribution of NO or NOS in living subjects with high fidelity which will greatly facilitate scientists/clinicians in the development of new drugs and/or patient management. Lastly, we will also discuss future directions/applications of NO/NOS imaging. Successful development of novel NO/NOS imaging agents with optimal in vivo stability and desirable pharmacokinetics for clinical translation will enable the maximum benefit in patient management. 相似文献
3.
Y Lee M A Marletta P Martasek L J Roman B S Masters R B Silverman 《Bioorganic & medicinal chemistry》1999,7(6):1097-1104
Conformationally restricted arginine analogues (1-5) were synthesized and found to be alternative substrates or inhibitors of the three isozymes of nitric oxide synthase (NOS). A comparison of k(cat)/Km values shows that (E)-3,4-didehydro-D,L-arginine (1) is a much better substrate than the corresponding (Z)-isomer (2) and 3-guanidino-D,L-phenylglycine (3), although none is as good a substrate as is arginine; 5-keto-D,L-arginine (4) is not a substrate, but is an inhibitor of the three isozymes. Therefore, it appears that arginine binds to all of the NOS isozymes in an extended (E-like) conformation. None of the compounds exhibits time-dependent inhibition of NOS, but they are competitive reversible inhibitors. Based on the earlier report that N(omega)-propyl-L-arginine is a highly selective nNOS inhibitor (Zhang, H. Q.; Fast, W.; Marletta, M.; Martasek, P.; Silverman, R. B. J. Med. Chem. 1997, 40, 3869), (E)-N(omega)-propyl-3,4-didehydro-D,L-arginine (5) was synthesized, but it was shown to be weakly potent and only a mildly selective inhibitor of NOS. Imposing conformational rigidity on an arginine backbone does not appear to be a favorable approach for selective NOS inhibition. 相似文献
4.
Mammalian nitric oxide synthases. 总被引:21,自引:0,他引:21
D J Stuehr 《Biochimica et biophysica acta》1999,1411(2-3):217-230
The nitric oxide (NO) synthase family of enzymes generate NO from L-arginine, which acts as a biologic effector molecule in a broad number of settings. This report summarizes some of the current information regarding NO synthase structure-function, reaction mechanism, control of catalysis, and protein interactions. 相似文献
5.
Nitric oxide (NO) is a key inter- and intracellular molecule involved in the maintenance of vascular tone, neuronal signaling, and host response to infection. The biosynthesis of NO in mammals involves a two-step oxidation of L-arginine (L-Arg) to citrulline and NO catalyzed by a particular class of heme-thiolate proteins, called NO-synthases (NOSs). The NOSs successively catalyze the Nomega-hydroxylation of the guanidine group of L-Arg with formation of Nomega-hydroxy-L-arginine (NOHA) and the oxidative cleavage of the CN(OH) bond of NOHA with formation of citrulline and NO. During the last decade, a great number of compounds bearing a CNH or CNOH function have been synthesized and studied as possible NO-producing substrates of recombinant NOSs. This includes derivatives of L-Arg and NOHA, N-alkyl (or aryl) guanidines, N,N'- or N,N-disubstituted guanidines, N-alkyl (or aryl) N'-hydroxyguanidines, N- (or O-) disubstituted N'-hydroxyguanidines, as well as amidoximes, ketoximes, and aldoximes. However, only those involving the NHC(NH2)=NH (or NOH) moiety have led to a significant formation of NO. All the N-monosubstituted N'-hydroxyguanidines that are well recognized by the NOS active site lead to NO with catalytic efficiences (kcat/Km) up to 50% of that of NOHA. This is the case of many N-aryl and N-alkyl N'-hydroxyguanidines, provided that the aryl or alkyl substituent is small enough to be accommodated by a NOS hydrophobic site located in close proximity of the NOS "guanidine binding site." As far as N-substituted guanidines are concerned, few compounds bearing a small alkyl group have been found to act as NO-producing substrates. The kcat value found for the best compound may reach 55% of the kcat of L-Arg oxidation. However, the best catalytic efficiency (kcat/Km) that was obtained with N-(4,4,4-trifluorobutyl) guanidine is only 100-fold lower than that of L-Arg. In a general manner, NOS II is a better catalyst that NOS I and III for the oxidation of exogenous guanidines and N-hydroxyguanidines to NO. This is particularly true for guanidines as the ones acting as substrates for NOS II have been found to be almost inactive for NOS I and NOS III. Thus, a good NO-producing guanidine substrate for the two latter isozymes remains to be found. 相似文献
6.
7.
Indoleamine 2,3-dioxygenase (IDO) is a heme-containing enzyme, which catalyzes the initial and rate-determining step of L-tryptophan (L-Trp) metabolism via the kynurenine pathway in nonhepatic tissues. Similar to inducible nitric oxide synthase (iNOS), IDO is induced by interferon-gamma and lipopolysaccharide in the inflammatory response. In vivo studies indicate that the nitric oxide (NO) produced by iNOS inhibits IDO activity by directly interacting with it and by promoting its degradation through the proteasome pathway. In this work, the molecular mechanisms underlying the interactions between NO and human recombinant IDO (hIDO) were systematically studied with optical absorption and resonance Raman spectroscopies. Resonance Raman data show that the heme prosthetic group in the NO-bound hIDO is situated in a unique protein environment and adopts an out-of-plane deformed geometry that is sensitive to L-Trp binding. Under mildly acidic conditions, the proximal heme iron-His bond is prone to rupture, resulting in a five-coordinate (5C) NO-bound species. The bond breakage reaction induces significant conformational changes in the protein matrix, which may account for the NO-induced inactivation of hIDO and its enhanced proteasome-linked degradation in vivo. Moreover, it was found that the NO-induced bond breakage reaction occurs more rapidly in the ferrous protein than in the ferric protein and is fully inhibited by L-Trp binding. The spectroscopic data presented here not only provide the first glimpse of the possible regulatory mechanism of hIDO by NO in the cell at the molecular level, but they also suggest that the NO-dependent regulation can be modulated by cellular factors, such as the NO abundance, pH, redox environment, and L-Trp availability. 相似文献
8.
Stuehr DJ Wei CC Santolini J Wang Z Aoyagi M Getzoff ED 《Biochemical Society symposium》2004,(71):39-49
NOSs (nitric oxide synthases) are flavohaem enzymes that function broadly in human health and disease. We are combining mutagenesis, crystallographic and rapid kinetic methods to understand their mechanism and regulation. The NOSs create a transient tetrahydrobiopterin radical within the enzyme to generate their free radical product (NO). Recent work is revealing how critically important this process is at all levels of catalysis. This article will synthesize four seemingly disparate but related aspects of NOS tetrahydrobiopterin radical formation: (i) how it enables productive O2 activation by providing an electron to the enzyme haem, (ii) what structural features help to regulate this electron transfer, (iii) how it enables NOS to synthesize NO from its diamagnetic substrate and (iv) how it allows NOS to release NO after each catalytic cycle instead of other nitorgen oxide-containing products. 相似文献
9.
Structure-function studies on nitric oxide synthases 总被引:6,自引:0,他引:6
Nitric oxide synthase (NOS) catalyzes the oxidation of one l-arginine guanidinium N atom to nitric oxide (NO). NOS consists of a heme domain linked to a flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD) reductase that shuttles electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the heme. This review summarizes various aspects of NOS structure and function derived from crystal structures coupled with a wealth of biochemical and biophysical data. This includes the binding of diatomic ligands, especially the product, NO, whose binding to the heme iron blocks enzyme activity. An unusual feature of NOS catalysis is the strict requirement for the essential cofactor, tetrahydrobiopterin (H4B). It now is generally agreed that H4B serves as an electron donor to the heme-oxy complex. The reason NOS may have recruited H4B as an electron transfer cofactor is to provide rapid coupled proton/electron transfer required for O2 activation. NOS is a highly regulated enzyme which is controlled by calmodulin (CaM) at the level of electron transfer within the FMN/FAD reductase and between the reductase and heme domains. Recent crystal structures provide a basis for developing models on the structural underpinnings of NOS regulation. In addition to the complex and fascinating functional and regulatory features of NOS, NOS is an important therapeutic target. Crystal structures have revealed the structural basis of isoform-selective inhibition by a group of dipeptide inhibitors which opens the way for structure-based inhibitor design. 相似文献
10.
11.
Nitric oxide (NO) is involved, together with plant hormones, in the adaptation to Al stress in plants. However, the mechanism by which NO and plant hormones interplay to improve Al tolerance are still unclear. We have recently shown that patterns of plant hormones alteration differ between rye and wheat under Al stress. NO may enhance Al tolerance by regulating hormonal equilibrium in plants, as a regulator of plant hormones signaling. In this paper, some unsolved issues are discussed based on recent studies and the complex network of NO and plant hormones in inducing Al tolerance of plants are proposed. 相似文献
12.
González-Domenech CM Muñoz-Chápuli R 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2010,5(4):295-301
Nitric oxide synthases (NOS), the enzymes responsible for the NO synthesis, are present in all eukaryotes. Three isoforms (neuronal, inducible and endothelial), encoded by different loci, have been described in vertebrates, although the endothelial isoform seems to be restricted to tetrapods. In invertebrates, a variety of NOS isoforms have been variably annotated as "inducible" or "neuronal", while others lack precise annotation. We have performed an exhaustive collection of the available NOS amino-acid sequences in order to perform a phylogenetic analysis. We hypothesized that the NOS isoforms reported in vertebrates derive from 1) different invertebrate NOS, 2) a single invertebrate ancestral gene, through an event related to the double whole genomic duplication that occurred at the origin of vertebrates, and 3) the endothelial form of NOS appeared late in the evolution of vertebrates, after the split of tetrapods and fishes. Our molecular evolution analysis strongly supports the second scenario, the three vertebrate NOS isoforms derived from a single ancestral invertebrate gene. Thus, the diverse NOS isoforms in invertebrates can be explained by events of gene duplication, but their characterization as "inducible" or "neuronal" should only be justified by physiological features, since they are evolutionarily unrelated to the homonym isoforms of vertebrates. 相似文献
13.
NO synthase (NOS) catalyzes the oxidation of L-arginine to L-citrulline and nitric oxide (NO) or a NO-releasing compound. At least three isoforms of NOS exist (types I-III). The activities of the type I isoform purified from brain and the type III isoform purified from endothelial cells are regulated by the intracellular free calcium concentration ([Ca2+]i) and the Ca(2+)-binding protein calmodulin. At resting [Ca2+]i, both isozymes are inactive; they become fully active at [Ca2+]i greater than or equal to 500 nM Ca2+. Longer lasting increases in [Ca2+]i may downregulate NO formation, for in vitro phosphorylation by Ca2+/calmodulin protein kinase II decreases the Vmax of NOS. Besides the conversion of L-arginine, type I NOS, Ca2+/calmodulin dependently, generates H2O2 and reduces cytochrome c/P450. Other redox activities, i.e. the reduction of nitroblue tetrazolium to diformazan (NADPH-diaphorase) or of quinoid-dihydrobiopterin to tetrahydrobiopterin, by NOS appear to be Ca2+/calmodulin-independent. 相似文献
14.
Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. 总被引:15,自引:0,他引:15
A M Leone R M Palmer R G Knowles P L Francis D S Ashton S Moncada 《The Journal of biological chemistry》1991,266(35):23790-23795
Nitric oxide (NO) is synthesized by a number of cells from a guanidino nitrogen atom of L-arginine by the action of either constitutive or inducible NO synthases, both of which form citrulline as a co-product. We have determined the source of the oxygen in both NO and in citrulline formed by the constitutive NO synthase from the vascular endothelium and brain and by the inducible NO synthase from the murine macrophage cell line J774. All these enzymes incorporate molecular oxygen both into NO and into citrulline. Furthermore, activated J774 cells form NO from omega-hydroxyl-L-arginine, confirming the proposal that this compound is an intermediate in the biosynthesis of NO. 相似文献
15.
P.R.L. Pires N.P. Santos P.R. Adona M.M. Natori K.R.L. Schwarz T.H.C. de Bem C.L.V. Leal 《Animal reproduction science》2009,116(3-4):233-243
Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (IVM) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM, but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity. 相似文献
16.
Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila 总被引:2,自引:0,他引:2
Broderick KE MacPherson MR Regulski M Tully T Dow JA Davies SA 《American journal of physiology. Cell physiology》2003,285(5):C1207-C1218
Signaling by nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) modulates fluid transport in Drosophila melanogaster. Expression of an inducible transgene encoding Drosophila NO synthase (dNOS) increases both NOS activity in Malpighian (renal) tubules and DNOS protein in both type I (principal) and type II (stellate) cells. However, cGMP content is increased only in principal cells. DNOS overexpression results in elevated basal rates of fluid transport in the presence of the phosphodiesterase (PDE) inhibitor, Zaprinast. Direct assay of tubule cGMP-hydrolyzing phosphodiesterase (cG-PDE) activity in wild-type and dNOS transgenic lines shows that cG-PDE activity is Zaprinast sensitive and is elevated upon dNOS induction. Zaprinast treatment increases cGMP content in tubules, particularly at the apical regions of principal cells, suggesting localization of Zaprinast-sensitive cG-PDE to these areas. Potential cross talk between activated NO/cGMP and calcium signaling was assessed in vivo with a targeted aequorin transgene. Activated DNOS signaling alone does not modify either neuropeptide (CAP2b)- or cGMP-induced increases in cytosolic calcium levels. However, in the presence of Zaprinast, both CAP2b-and cGMP-stimulated calcium levels are potentiated upon DNOS overexpression. Use of the calcium channel blocker, verapamil, abolishes the Zaprinast-induced transport phenotype in dNOS-overexpressing tubules. Molecular genetic intervention in the NO/cGMP signaling pathway has uncovered a pivotal role for cell-specific cG-PDE in regulating the poise of the fluid transporting Malpighian tubule via direct effects on intracellular cGMP concentration and localization and via interactions with calcium signaling mechanisms. Malpighian tubule; cGMP; calcium; aequorin; CNG channel 相似文献
17.
Hagmann WK Caldwell CG Chen P Durette PL Esser CK Lanza TJ Kopka IE Guthikonda R Shah SK MacCoss M Chabin RM Fletcher D Grant SK Green BG Humes JL Kelly TM Luell S Meurer R Moore V Pacholok SG Pavia T Williams HR Wong KK 《Bioorganic & medicinal chemistry letters》2000,10(17):1975-1978
A series of substituted 2-aminopyridines was prepared and evaluated as inhibitors of human nitric oxide synthases (NOS). 4,6-Disubstitution enhanced both potency and specificity for the inducible NOS with the most potent compound having an IC50 of 28 nM. 相似文献
18.
Yanfeng Gao Shuang Zhou Lizhi Pang Juechen Yang Han John Li 《Free radical research》2019,53(3):324-334
The thunder god vine (Tripterygium wilfordii Hook. F) is traditionally used for inflammation-related diseases in traditional Chinese medicine. In recent years, celastrol (a natural compound from the root of the thunder god vine) has attracted great interest for its potential anticancer activities. The free radical nitric oxide (NO) is known to play a critical role in colorectal cancer growth by promoting tumour angiogenesis. However, how celastrol influences the NO pathway and its mechanism against colorectal cancer is largely unknown. In this study, we investigated the effects and mechanism of celastrol on nitric oxide synthase (NOS) and the angiogenesis pathway in colorectal cancer. Our data show that celastrol inhibited HT-29 and HCT116 cell proliferation, migration, and NOS activity in the cytoplasm. The antiproliferation activity of celastrol was associated with the inhibition of iNOS and eNOS in colorectal cancer cells. Treatment with celastrol inhibited colorectal cancer cell growth and migration, and was associated with suppression of the expression of key genes (TYMP, CDH5, THBS2, LEP, MMP9, and TNF) and proteins (IL-1b, MMP-9, PDGF, Serpin E1, and TIMP-4) involved in the angiogenesis pathway. In addition, combinational use of celastrol with 5-fluorouracil, salinomycin, 1400 W, and L-NIO showed enhanced inhibition of colorectal cancer cell proliferation and migration. In sum, our study suggests that celastrol could suppress colorectal cancer cell growth and migration, likely through suppressing NOS activity and inhibiting the angiogenesis pathway. 相似文献
19.
20.
Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. 相似文献