首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant exhibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analysis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp (t). Based on its mutant phenotype, fzp (t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the "middle type", suggesting that the action of fzp (t) is influenced by the presence of redundant, modifier or interactive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp (t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp (t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.  相似文献   

3.
Monocots and dicots have diverged for 120 million years. The floral morpha of cereals isunique and much different from that of dicot plants. Nevertheless, it has been found that most genes controlling flower development share a conserved sequence called MADS-box[1]. Therefore,it is likely that monocots and dicots could have similar basic characteristics of flower developmentbut the mechanisms of genetic regulation for flowering induction and floral differentiation might be different[2,3]. Du…  相似文献   

4.
A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant exhibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analysis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp(t). Based on its mutant phenotype, fzp(t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the “middle type”, suggesting that the action of fzp(t) is influenced by the presence of redundant, modifier or interactive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp(t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp(t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.  相似文献   

5.
We have analyzed two mutants that exhibit altered panicle architecture in rice (Oryza sativa L.). In lax1-2, which is a new and stronger allele of the previously reported lax mutant, initiation and/or maintenance of rachis-branches, lateral spikelets, and terminal spikelets was severely prevented. In situ hybridization analysis using OSH1, a rice knotted1 (kn1) ortholog, confirmed the absence of lateral meristems in lax1-2 panicles. These defects indicate that the LAX1 gene is required for the initiation/maintenance of axillary meristems in the rice panicle. In addition to its role in forming lateral meristems, the wild-type LAX1 gene acts as a floral meristem identity gene which specifies the terminal spikelet meristem. A comparison of the defects in lax1-1 and lax1-2 plants suggested that the sensitivities to reduced LAX1 activity were not uniform among different types of meristems. In the fzp2 mutant panicle, the basic branching pattern of the panicle was indistinguishable from that of the wild type; however, specification of both terminal and lateral spikelet meristems was blocked, and sequential rounds of branching occurred at the point where the spikelet meristems are initiated in the wild-type panicle. This resulted in the generation of a panicle composed of excessive ramification of rachis-branches. The lax1-1 fzp2 double mutants exhibited a novel, basically additive, phenotype, which suggests that LAX1 and FZP2 function in genetically independent pathways.  相似文献   

6.
The tassel seed mutations ts4 and Ts6 of maize cause irregular branching in its inflorescences, tassels, and ears, in addition to feminization of the tassel due to the failure to abort pistils. A comparison of the development of mutant and wild-type tassels and ears using scanning electron microscopy reveals that at least four reproductive meristem types can be identified in maize: the inflorescence meristem, the spikelet pair meristem, the spikelet meristem, and the floret meristem. ts4 and Ts6 mutations affect the fate of specific reproductive meristems in both tassels and ears. ts4 mutants fail to form spikelet meristems from spikelet pair meristems. Ts6 mutants are delayed in the conversion of certain spikelet meristems into floret meristems. Once floret meristems are established in both of these mutants, they form florets that appear normal but fail to undergo pistil abortion in the tassel. The abnormal branching associated with each mutant is suppressed at the base of ears, permitting the formation of normal, fertile spikelets. The classification of the different types of reproductive meristems will be useful in interpretation of gene expression patterns in maize. It also provides a framework for understanding meristem functions that can be varied to diversify inflorescence architectures in the Gramineae.  相似文献   

7.
Using C-banding and FISH methods, the karyotype of MC1611 induced mutant of bread wheat, which develop additional spikelets at a rachis node (trait “supernumerary spikelets”) was characterized. It was determined that the mutant phenotype is not associated with aneuploidy and major chromosomal rearrangements. The results of genetic analysis showed that supernumerary spikelets of the line are caused by a mutation of the single Bh-D.1 gene, influenced by the genetic background. The mutation causes abnormalities of inflorescence morphogenesis associated with the development of ectopic spikelet meristems in place of floral meristems in the basal part of the spikelets, causing the appearance of additional spikes at a rachis node. The mutant phenotype suggests that the Bh-D gene determines the fate of the lateral meristems in ear, which develops as floral meristem and gives rise to floral organs in wild-type inflorescences. In the bh-D.1 mutant, the floral meristem identity is impaired. The characterized mutant can be used in further studies on molecular genetic basis of development of wheat inflorescence.  相似文献   

8.
9.
Inflorescence organogenesis of a wild-type and a gynomonoecious (pistillate) mutant in Tripsacum dactyloides was studied using scanning electron microscopy. SEM (scanning electron microscope) analysis indicated that wild-type T. dactyloides (Eastern gamagrass) expressed a pattern of inflorescence organogenesis that is observed in other members of the subtribe Tripsacinae (Zea: maize and teosinte), family Poaceae. Branch primordia are initiated acropetally along the rachis of wild-type inflorescences in a distichous arrangement. Branch primordia at the base of some inflorescences develop into long branches, which themselves produce an acropetal series of distichous spikelet pair primordia. All other branch primordia function as spikelet pair primordia and bifurcate into pedicellate and sessile spikelet primordia. In all wild-type inflorescences development of the pedicellate spikelets is arrested in the proximal portion of the rachis, and these spikelets abort, leaving two rows of solitary sessile spikelets. Organogenesis of spikelets and florets in wild-type inflorescences is similar to that previously described in maize and the teosintes. Our analysis of gsf1 mutant inflorescences reveals a pattern of development similar to that of the wild type, but differs from the wild type in retaining (1) the pistillate condition in paired spikelets along the distal portion of the rachis and (2) the lower floret in sessile spikelets in the proximal region of the rachis. The gsf1 mutation blocks gynoecial tissue abortion in both the paired-spikelet and the unpaired-spikelet zone. This study supports the hypothesis that both femaleness and maleness in Zea and Tripsacum inflorescences are derived from a common developmental pathway. The pattern of inflorescence development is not inconsistent with the view that the maize ear was derived from a Tripsacum genomic background.  相似文献   

10.
水稻小穗特征基因FZP的图位克隆   总被引:6,自引:1,他引:5  
FZP是水稻中控制小穗分化的一个关键基因,先前已将它定位在第7染色体上。通过进一步对该基因进行精细定位和图位克隆,找到2个SSR标记NRM6和NRM8,将该基因锁定在一个遗传距离为1.2cM的范围内(两标记与目标基因的遗传距离分别为0.2cM和1.0cM),相应的物理距离为144kb。发现在预期的目标基因位置,存在一个具有类似AP2结构域的基因。已知AP2是一个控制植物花发育的重要基因。因此,这个基因应是FZP的一个候选基因。PCR扩增结果显示,突变体中该基因有一个大约4kb的插人片段,与向共分离。由此可以初步认为,该基因就是FZP。  相似文献   

11.
12.
The architecture of maize inflorescences, the male tassel and the female ear, is defined by a series of reiterative branching events. The inflorescence meristem initiates spikelet pair meristems. These in turn initiate spikelet meristems which finally produce the floret meristems. After initiating one meristem, the spikelet pair and spikelet meristem convert into spikelet and floret meristems, respectively. The phenotype of reversed germ orientation1 (rgo1) mutants is the production of an increased number of floret meristems by each spikelet meristem. The visible phenotypes include increased numbers of flowers in tassel and ear spikelets, disrupted rowing in the ear, fused kernels, and kernels with embryos facing the base of the ear, the opposite orientation observed in wild-type ears. rgo1 behaves as single recessive mutant. indeterminate spikelet1 (ids1) is an unlinked recessive mutant that has a similar phenotype to rgo1. Plants heterozygous for both rgo1 and ids1 exhibit nonallelic noncomplementation; these mutants fail to complement each other. Plants homozygous for both mutations have more severe phenotypes than either of the single mutants; the progression of meristem identities is retarded and sometimes even reversed. In addition, in rgo1; ids1 double mutants extra branching is observed in spikelet pair meristems, a meristem that is not affected by mutants of either gene individually. These data suggest a model for control of meristem identity and determinacy in which the progress through meristem identities is mediated by a dosage-sensitive pathway. This pathway is combinatorially controlled by at least two genes that have overlapping functions.  相似文献   

13.
Wu X  Skirpan A  McSteen P 《Plant physiology》2009,149(1):205-219
The spikelet, which is a short branch bearing the florets, is the fundamental unit of grass inflorescence architecture. In most grasses, spikelets are borne singly on the inflorescence. However, paired spikelets are characteristic of the Andropogoneae, a tribe of 1,000 species including maize (Zea mays). The Suppressor of sessile spikelets1 (Sos1) mutant of maize produces single instead of paired spikelets in the inflorescence. Therefore, the sos1 gene may have been involved in the evolution of paired spikelets. In this article, we show that Sos1 is a semidominant, antimorph mutation. Sos1 mutants have fewer branches and spikelets for two reasons: (1) fewer spikelet pair meristems are produced due to defects in inflorescence meristem size and (2) the spikelet pair meristems that are produced make one instead of two spikelet meristems. The interaction of Sos1 with the ramosa mutants, which produce more branches and spikelets, was investigated. The results show that Sos1 has an epistatic interaction with ramosa1 (ra1), a synergistic interaction with ra2, and an additive interaction with ra3. Moreover, ra1 mRNA levels are reduced in Sos1 mutants, while ra2 and ra3 mRNA levels are unaffected. Based on these genetic and expression studies, we propose that sos1 functions in the ra1 branch of the ramosa pathway controlling meristem determinacy.  相似文献   

14.
Meristems may be determinate or indeterminate. In maize, the indeterminate inflorescence meristem produces three types of determinate meristems: spikelet pair, spikelet and floral meristems. These meristems are defined by their position and their products. We have discovered a gene in maize, indeterminate floral apex1 (ifa1) that regulates meristem determinacy. The defect found in ifa1 mutants is specific to meristems and does not affect lateral organs. In ifa1 mutants, the determinate meristems become less determinate. The spikelet pair meristem initiates more than a pair of spikelets and the spikelet meristem initiates more than the normal two flowers. The floral meristem initiates all organs correctly, but the ovule primordium, the terminal product of the floral meristem, enlarges and proliferates, expressing both meristem and ovule marker genes. A role for ifa1 in meristem identity in addition to meristem determinacy was revealed by double mutant analysis. In zea agamous1 (zag1) ifa1 double mutants, the female floral meristem converts to a branch meristem whereas the male floral meristem converts to a spikelet meristem. In indeterminate spikelet1 (ids1) ifa1 double mutants, female spikelet meristems convert to branch meristems and male spikelet meristems convert to spikelet pair meristems. The double mutant phenotypes suggest that the specification of meristems in the maize inflorescence involves distinct steps in an integrated process.  相似文献   

15.
The barley mutant, poly-row-and-branched spike (prbs) showed altered inflorescence morphology: complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets similar to the six-rowed phenotype, and additional spikelets in the middle of spike. Moreover, branched spikes emerged in progeny from a cross between the mutant and a six-rowed barley cultivar. Morphological observation of the development of immature spikes of the mutant and descendants with branched spikes showed that the Prbs gene is involved in spikelet development in the triple-mound stage. In mutant prbs, new meristems initiated at the flanks of lateral spikelets and middle spikelet meristems were converted to branch meristems, developing branched spikes. These observations suggested that the Prbs gene plays a crucial role in spikelet initiation and identity maintenance. The Prbs gene may be an important modifier in inflorescence differentiation from a panicle into a spike. The branched spikes emerging in hybrids from a cross between the mutant and six-rowed barley cultivar were not conferred by the gene vrs1 or Int-c, which decide spike morphology in six-rowed barley. These results imply that although six-row genes vrs1 and Int-c and prbs have similar effects on lateral spikelet development, they have different functions in branched spikes. The Prbs gene was mapped to chromosome 3H between SSR marker Bmag0023 and marker Cbic60 at a genetic distance of 3.3 and 5.4 centimorgans (cM), respectively.  相似文献   

16.
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.  相似文献   

17.
The Relationship between auxin transport and maize branching   总被引:8,自引:2,他引:6  
Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.  相似文献   

18.
Irish EE 《Plant physiology》1997,114(3):817-825
The maize (Zea mays L.) mutation Tassel seed 6 (Ts6) disrupts both sex determination in the tassel and the pattern of branching in inflorescences. This results in the formation of supernumerary florets in tassels and ears and in the development of pistils in tassel florets where they are normally aborted. A developmental analysis indicated that extra florets in Ts6 inflorescences are most likely the result of delayed determinacy in spikelet meristems, which then initiate additional floret meristems rather than initiating floral organs as in wild type. I have used culturing experiments to assay whether delayed determinacy of Ts6 mutant tassels is reflected in an altered timing of specific determination events. Length of the tassel was used as a developmental marker. These experiments showed that although Ts6 tassels elongate much more slowly than wild type, both mutant and wild-type tassels gained the ability to form flowers with organs of normal morphology in culture at the same time. In situ hybridization patterns of expression of the maize gene Kn, which is normally expressed in shoot meristems and not in determinate lateral organs, confirmed that additional meristems, rather than lateral organs, are initiated by spikelet meristems in Ts6 tassels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号